1
|
Shaul Y and Ben-Yehoyada M: Role of c-Abl
in the DNA damage stress response. Cell Res. 15:33–35. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Maiani E, Diederich M and Gonfloni S: DNA
damage response: The emerging role of c-Abl as a regulatory switch?
Biochem Pharmacol. 82:1269–1276. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tu CC, Zhong Y, Nguyen L, Tsai A, Sridevi
P, Tarn WY and Wang JY: The kinase ABL phosphorylates the
microprocessor subunit DGCR8 to stimulate primary microRNA
processing in response to DNA damage. Sci Signal. 8:ra642015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Reuven N, Adler J, Porat Z, Polonio-Vallon
T, Hofmann TG and Shaul Y: The tyrosine kinase c-Abl promotes
homeodomain-interacting protein kinase 2 (HIPK2) accumulation and
activation in response to DNA damage. J Biol Chem. 290:16478–16488.
2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Staquicini FI, Qian MD, Salameh A, Dobroff
AS, Edwards JK, Cimino DF, Moeller BJ, Kelly P, Nunez MI, Tang X,
et al: Receptor tyrosine kinase EphA5 is a functional molecular
target in human lung cancer. J Biol Chem. 290:7345–7359. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen E, Ahn JS, Massie CE, Clynes D,
Godfrey AL, Li J, Park HJ, Nangalia J, Silber Y, Mullally A, et al:
JAK2V617F promotes replication fork stalling with
disease-restricted impairment of the intra-S checkpoint response.
Proc Natl Acad Sci USA. 111:15190–15195. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Reuven N, Adler J, Meltser V and Shaul Y:
The Hippo pathway kinase Lats2 prevents DNA damage-induced
apoptosis through inhibition of the tyrosine kinase c-Abl. Cell
Death Differ. 20:1330–1340. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fukumoto Y, Morii M, Miura T, Kubota S,
Ishibashi K, Honda T, Okamoto A and Yamaguchi N, Iwama A, Nakayama
Y and Yamaguchi N: Src family kinases promote silencing of
ATR-Chk1signaling in termination of DNA damage checkpoint. J Bol
Chem. 289:12313–12329. 2014. View Article : Google Scholar
|
9
|
Mahajan K, Coppola D, Rawal B, Chen YA,
Lawrence HR, Engelman RW, Lawrence NJ and Mahajan NP: Ack1-mediated
androgen receptor phosphorylation modulates radiation resistance in
castration-resistant prostate cancer. J Biol Chem. 287:22112–22122.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kharbanda S, Saleem A, Yuan ZM, Kraeft S,
Weichselbaum R, Chen LB and Kufe D: Nuclear signaling induced by
ionizing radiation involves colocalization of the activated
p56/p53lyn tyrosine kinase with p34cdc2. Cancer Res. 56:3617–3621.
1996.PubMed/NCBI
|
11
|
Srinivasan D and Plattner R: Activation of
Abl tyrosine kinases promotes invasion of aggressive breast cancer
cells. Cancer Res. 66:5648–5655. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hunter T: The genesis of tyrosine
phosphorylation. Cold Spring Harb Perspect Biol. 6:a0206442014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Pawson T: Specificity in signal
transduction: From phosphotyrosine-SH2 domain interactions to
complex cellular systems. Cell. 116:191–203. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hunter T: Tyrosine phosphorylation: Thirty
years and counting. Curr Opin Cell Biol. 21:140–146. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Lind SB, Artemenko KA and Pettersson U: A
strategy for identification of protein tyrosine phosphorylation.
Methods. 56:275–283. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hantschel O and Superti-Furga G:
Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol
Cell Biol. 5:33–44. 2004. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Shaul Y: c-Abl: Activation and nuclear
targets. Cell Death Differ. 7:10–16. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shiloh Y: ATM and related protein kinases:
Safeguarding genome integrity. Nat Rev Cancer. 3:155–168. 2003.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Lindholm D, Pham DD, Cascone A, Eriksson
O, Wennerberg K and Saarma M: c-Abl inhibitors enable insights into
the pathophysiology and neuroprotection in parkinson's disease.
Front Aging Neurosci. 8:2542016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu ZG, Baskaran R, Lea-Chou ET, Wood LD,
Chen Y, Karin M and Wang JY: Three distinct signalling responses by
murine fibroblasts to genotoxic stress. Nature. 384:273–276. 1996.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kharbanda S, Ren R, Pandey P, Shafman TD,
Feller SM, Weichselbaum RR and Kufe DW: Activation of the c-Abl
tyrosine kinase in the stress response to DNA-damaging agents.
Nature. 376:785–788. 1995. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Colicelli J: ABL tyrosine kinases:
Evolution of function, regulation, and specificity. Sci Signal.
3:re62010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zuckerman V, Lenos K, Popowicz GM,
Silberman I, Grossman T, Marine JC, Holak TA, Jochemsen AG and
Haupt Y: c-Abl phosphorylates Hdmx and regulates its interaction
with p53. J Biol Chem. 284:4031–4039. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gu JJ, Ryu JR and Pendergast AM: Abl
tyrosine kinases in T-cell signaling. Immunol Rev. 228:170–183.
2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sirvent A, Benistant C and Roche S:
Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and
cancer cells. Biol Cell. 100:617–631. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhu J and Wang JY: Death by Abl: A matter
of location. Curr Top Dev Biol. 59:165–192. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pendergast AM: The Abl family kinases:
Mechanisms of regulation and signaling. Adv Cancer Res. 85:51–100.
2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gonfloni S: DNA damage stress response in
germ cells: Role of c-Abl and clinical implications. Oncogene.
29:6193–6202. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Curtin NJ: DNA repair dysregulation from
cancer driver to therapeutic target. Nat Rev Cancer. 12:801–817.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sirbu BM and Cortez D: DNA damage
response: Three levels of DNA repair regulation. Cold Spring Harb
Perspect Biol. 5:a0127242013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ba X and Boldogh I: 8-Oxoguanine DNA
glycosylase 1: Beyond repair of the oxidatively modified base
lesions. Redox Biol. 14:669–678. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Arai H, Wada R, Ishino K, Kudo M, Uchida E
and Naito Z: Expression of DNA damage response proteins in gastric
cancer: Comprehensive protein profiling and histological analysis.
Int J Oncol. 52:978–988. 2018.PubMed/NCBI
|
33
|
Han YG, Yun M, Choi M, Lee SG and Kim H:
TRAIP regulates Histone H2B monoubiquitination in DNA damage
response pathways. Oncol Rep. 41:3305–3312. 2019.PubMed/NCBI
|
34
|
Lovejoy CA and Cortez D: Common mechanisms
of PIKK regulation. DNA Repair (Amst). 8:1004–1008. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Weterings E and Chen DJ: DNA-dependent
protein kinase in nonhomologous end joining: A lock with multiple
keys? J Cell Biol. 179:183–186. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dobbs TA, Tainer JA and Lees-Miller SP: A
structural model for regulation of NHEJ by DNA-PKcs
autophosphorylation. DNA Repair (Amst). 9:1307–1314. 2010.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Kharbanda S, Yuan ZM, Weichselbaum R and
Kufe D: Functional role for the c-Abl protein tyrosine kinase in
the cellular response to genotoxic stress. Biochim Biophys Acta.
1333:O1–O7. 1997.PubMed/NCBI
|
38
|
Wang JY: Controlling Abl: Auto-inhibition
and co-inhibition? Nat Cell Biol. 6:3–7. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tang J, Wang JY and Parker LL: Detection
of early Abl kinase activation after ionizing radiation by using a
peptide biosensor. Chembiochem. 13:665–673. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Meltser V, Ben-Yehoyada M and Shaul Y:
c-Abl tyrosine kinase in the DNA damage response: Cell death and
more. Cell Death Differ. 18:2–4. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen G, Yuan SS, Liu W, Xu Y, Trujillo K,
Song B, Cong F, Goff SP, Wu Y, Arlinghaus R, et al:
Radiation-induced assembly of Rad51 and Rad52 recombination complex
requires ATM and c-Abl. J Biol Chem. 274:12748–12752. 1999.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Shimizu H, Popova M, Fleury F, Kobayashi
M, Hayashi N, Sakane I, Kurumizaka H, Venkitaraman AR, Takahashi M
and Yamamoto K: c-ABL tyrosine kinase stabilizes RAD51 chromatin
association. Biochem Biophys Res Commun. 382:286–291. 2009.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Kitao H and Yuan ZM: Regulation of
ionizing radiation-induced Rad52 nuclear foci formation by
c-Abl-mediated phosphorylation. J Biol Chem. 277:48944–48948. 2002.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Oliner JD, Kinzler KW, Meltzer PS, George
DL and Vogelstein B: Amplification of a gene encoding a
p53-associated protein in human sarcomas. Nature. 358:80–83. 1992.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Goldberg Z, Vogt Sionov R, Berger M, Zwang
Y, Perets R, Van Etten RA, Oren M, Taya Y and Haupt Y: Tyrosine
phosphorylation of Mdm2 by c-Abl: Implications for p53 regulation.
EMBO J. 21:3715–3727. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Carr MI, Roderick JE, Zhang H, Woda BA,
Kelliher MA and Jones SN: Phosphorylation of the Mdm2 oncoprotein
by the c-Abl tyrosine kinase regulates p53 tumor suppression and
the radiosensitivity of mice. Proc Natl Acad Sci USA.
113:15024–15029. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wade M, Wong ET, Tang M, Stommel JM and
Wahl GM: Hdmx modulates the outcome of p53 activation in human
tumor cells. J Biol Chem. 281:33036–33044. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Dias SS, Milne DM and Meek DW: c-Abl
phosphorylates Hdm2 at tyrosine 276 in response to DNA damage and
regulates interaction with ARF. Oncogene. 25:6666–6671. 2006.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen X, Gohain N, Zhan C, Lu WY, Pazgier M
and Lu W: Structural basis of how stress-induced MDMX
phosphorylation activates p53. Oncogene. 35:1919–1925. 2016.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Xiong S, Van Pelt CS, Elizondo-Fraire AC,
Liu G and Lozano G: Synergistic roles of Mdm2 and Mdm4 for p53
inhibition in central nervous system development. Proc Natl Acad
Sci USA. 103:3226–3231. 2006. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yang A, Kaghad M, Wang Y, Gillett E,
Fleming MD, Dötsch V, Andrews NC, Caput D and McKeon F: p63, a p53
homolog at 3q27-29, encodes multiple products with transactivating,
death-inducing, and dominant-negative activities. Mol Cell.
2:305–316. 1998. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wu G, Nomoto S, Hoque MO, Dracheva T,
Osada M, Lee CC, Dong SM, Guo Z, Benoit N, Cohen Y, et al:
DeltaNp63alpha and TAp63alpha regulate transcription of genes with
distinct biological functions in cancer and development. Cancer
Res. 63:2351–2357. 2003.PubMed/NCBI
|
53
|
Gonfloni S, Di Tella L, Caldarola S,
Cannata SM, Klinger FG, Di Bartolomeo C, Mattei M, Candi E, De
Felici M, Melino G and Cesareni G: Inhibition of the c-Abl-TAp63
pathway protects mouse oocytes from chemotherapy-induced death. Nat
Med. 15:1179–1185. 2009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J,
Huang YY, Lu H, Kharbanda S, Weichselbaum R and Kufe D: p73 is
regulated by tyrosine kinase c-Abl in the apoptotic response to DNA
damage. Nature. 399:814–817. 1999. View
Article : Google Scholar : PubMed/NCBI
|
55
|
Keshet R, Adler J, Ricardo Lax I, Shanzer
M, Porat Z, Reuven N and Shaul Y: c-Abl antagonizes the YAP
oncogenic function. Cell Death Differ. 22:935–945. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yamaguchi N, Yuki R, Kubota S, Aoyama K,
Kuga T, Hashimoto Y, Tomonaga T and Yamaguchi N: c-Abl-mediated
tyrosine phosphorylation of JunB is required for adriamycin-induced
expression of p21. Biochem J. 471:67–77. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Karimian A, Ahmadi Y and Yousefi B:
Multiple functions of p21 in cell cycle, apoptosis and
transcriptional regulation after DNA damage. DNA Repair (Amst).
42:63–71. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Jin S, Kharbanda S, Mayer B, Kufe D and
Weaver DT: Binding of Ku and c-Abl at the kinase homology region of
DNA-dependent protein kinase catalytic subunit. J Biol Chem.
272:24763–24766. 1997. View Article : Google Scholar : PubMed/NCBI
|
59
|
Hartley KO, Gell D, Smith GC, Zhang H,
Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW and
Jackson SP: DNA-dependent protein kinase catalytic subunit: A
relative of phosphatidylinositol 3-kinase and the ataxia
telangiectasia gene product. Cell. 82:849–856. 1995. View Article : Google Scholar : PubMed/NCBI
|
60
|
Keith CT and Schreiber SL: PIK-related
kinases: DNA repair, recombination, and cell cycle checkpoints.
Science. 270:50–51. 1995. View Article : Google Scholar : PubMed/NCBI
|
61
|
Yi W, Lee TH, Tompkins JD, Zhu F, Wu X and
Her C: Physical and functional interaction between hMSH5 and c-Abl.
Cancer Res. 66:151–158. 2006. View Article : Google Scholar : PubMed/NCBI
|
62
|
Friedenson B: The BRCA1/2 pathway prevents
hematologic cancers in addition to breast and ovarian cancers. BMC
Cancer. 7:1522007. View Article : Google Scholar : PubMed/NCBI
|
63
|
Foray N, Marot D, Randrianarison V,
Venezia ND, Picard D, Perricaudet M, Favaudon V and Jeggo P:
Constitutive association of BRCA1 and c-Abl and its ATM-dependent
disruption after irradiation. Mol Cell Biol. 22:4020–4032. 2002.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Schreiber V, Dantzer F, Ame JC and de
Murcia G: Poly(ADP-ribose): Novel functions for an old molecule.
Nat Rev Mol Cell Biol. 7:517–528. 2006. View Article : Google Scholar : PubMed/NCBI
|
65
|
Erdélyi K, Bakondi E, Gergely P, Szabó C
and Virág L: Pathophysiologic role of oxidative stress-induced
poly(ADP-ribose) polymerase-1 activation: Focus on cell death and
transcriptional regulation. Cell Mol Life Sci. 62:751–759. 2005.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Malanga M and Althaus FR: The role of
poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell
Biol. 83:354–364. 2005. View Article : Google Scholar : PubMed/NCBI
|
67
|
Haince JF, McDonald D, Rodrigue A, Déry U,
Masson JY, Hendzel MJ and Poirier GG: PARP1-dependent kinetics of
recruitment of MRE11 and NBS1 proteins to multiple DNA damage
sites. J Biol Chem. 283:1197–1208. 2008. View Article : Google Scholar : PubMed/NCBI
|
68
|
Bonicalzi ME, Haince JF, Droit A and
Poirier GG: Regulation of poly(ADP-ribose) metabolism by
poly(ADP-ribose) glycohydrolase: Where and when? Cell Mol Life Sci.
62:739–750. 2005. View Article : Google Scholar : PubMed/NCBI
|
69
|
Bohio AA, Sattout A, Wang R, Wang K, Sah
RK, Guo X, Zeng X, Ke Y, Boldogh I and Ba X: c-Abl-mediated
tyrosine phosphorylation of PARP1 is crucial for expression of
proinflammatory genes. J Immunol. 203:1521–1531. 2019. View Article : Google Scholar : PubMed/NCBI
|