1
|
Kumari N, Karmakar A and Ganesan SK:
Targeting epigenetic modifications as a potential therapeutic
option for diabetic retinopathy. J Cell Physiol. 235:1933–1947.
2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Leal EC, Manivannan A, Hosoya K, Terasaki
T, Cunha-Vaz J, Ambrosio AF and Forrester JV: Inducible nitric
oxide synthase isoform is a key mediator of leukostasis and
blood-retinal barrier breakdown in diabetic retinopathy. Invest
Ophthalmol Vis Sci. 48:5257–5265. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Diabetes Control and Complications
Trial/Epidemiology of Diabetes Interventions and Complications
(DCCT/EDIC) Research Group, . Nathan DM, Zinman B, Cleary PA,
Backlund JY, Genuth S, Miller R and Orchard TJ: Modern-day clinical
course of type 1 diabetes mellitus after 30 years' duration: The
diabetes control and complications trial/epidemiology of diabetes
interventions and complications and pittsburgh epidemiology of
diabetes complications experience (1983–2005). Arch Intern Med.
169:1307–1316. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Elmasry K, Ibrahim AS, Saleh H, Elsherbiny
N, Elshafey S, Hussein KA and Al-Shabrawey M: Role of endoplasmic
reticulum stress in 12/15-lipoxygenase-induced retinal
microvascular dysfunction in a mouse model of diabetic retinopathy.
Diabetologia. 61:1220–1232. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang S, Liu Y, Tan JW, Hu T, Zhang HF,
Sorenson CM, Smith JA and Sheibani N: Tunicamycin-induced
photoreceptor atrophy precedes degeneration of retinal capillaries
with minimal effects on retinal ganglion and pigment epithelium
cells. Exp Eye Res. 187:1077562019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rubsam A, Parikh S and Fort PE: Role of
inflammation in diabetic retinopathy. Int J Mol Sci. 19:E9422018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Hotamisligil GS: Endoplasmic reticulum
stress and the inflammatory basis of metabolic disease. Cell.
140:900–917. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang K and Kaufman RJ: From
endoplasmic-reticulum stress to the inflammatory response. Nature.
454:455–462. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang C, Diiorio P, Jurczyk A,
O'Sullivan-Murphy B, Urano F and Bortell R: Pathological
endoplasmic reticulum stress mediated by the IRE1 pathway
contributes to pre-insulitic beta cell apoptosis in a virus-induced
rat model of type 1 diabetes. Diabetologia. 56:2638–2646. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Guo HL, Hassan HM, Ding PP, Wang SJ, Chen
X, Wang T, Sun LX, Zhang LY and Jiang ZZ: Pyrazinamide-induced
hepatotoxicity is alleviated by 4-PBA via inhibition of the
PERK-eIF2α-ATF4-CHOP pathway. Toxicology. 378:65–75. 2017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang Q, Yuan X, Chen Y, Zheng Q, Xu L and
Wu Y: Endoplasmic reticulum stress mediated MDRV p10.8
protein-induced cell cycle arrest and apoptosis through the
PERK/eIF2α pathway. Front Microbiol. 9:13272018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shi Y, Parag S, Patel R, Lui A, Murr M,
Cai J and Patel NA: Stabilization of lncRNA GAS5 by a small
molecule and its implications in diabetic adipocytes. Cell Chem
Biol. 26:319–330.e316. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li Z, Yu Z, Meng X, Zhou S, Xiao S, Li X,
Liu S and Yu P: Long noncoding RNA GAS5 impairs the proliferation
and invasion of endometrial carcinoma induced by high glucose via
targeting miR-222-3p/p27. Am J Transl Res. 11:2413–2421.
2019.PubMed/NCBI
|
14
|
Qi M, Zhou Q, Zeng W, Shen M, Liu X, Luo
C, Long J, Chen W, Zhang J and Yan S: Analysis of long non-coding
RNA expression of lymphatic endothelial cells in response to type 2
diabetes. Cell Physiol Biochem. 41:466–474. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xie X, Dai J, Huang X, Fang C and He W:
MicroRNA-145 inhibits proliferation and induces apoptosis in human
prostate carcinoma by upregulating long non-coding RNA GAS5. Oncol
Lett. 18:1043–1048. 2019.PubMed/NCBI
|
16
|
He X, Wang S, Li M, Zhong L, Zheng H, Sun
Y, Lai Y, Chen X, Wei G, Si X, et al: Long noncoding RNA GAS5
induces abdominal aortic aneurysm formation by promoting smooth
muscle apoptosis. Theranostics. 9:5558–5576. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Salemi M, Cannarella R, Condorelli RA,
Cimino L, Ridolfo F, Giurato G, Romano C, La Vignera S and Calogero
AE: Evidence for long noncoding RNA GAS5 up-regulationin patients
with Klinefelter syndrome. BMC Med Genet. 20:42019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Guo H, Wang Y, Zhang X, Zang Y, Zhang Y,
Wang L, Wang H, Wang Y, Cao A and Peng W: Astragaloside IV protects
against podocyte injury via SERCA2-dependent ER stress reduction
and AMPKα-regulated autophagy induction in streptozotocin-induced
diabetic nephropathy. Sci Rep. 7:68522017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zickri MB, Aboul-Fotouh GI, Omar AI,
El-Shafei AA and Reda AM: Effect of stem cells and gene transfected
stem cells therapy on the pancreas of experimentally induced type 1
diabetes. Int J Stem Cells. 11:205–215. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Capellades J, Navarro M, Samino S,
Garcia-Ramirez M, Hernandez C, Simo R, Vinaixa M and Yanes O:
geoRge: A computational tool to detect the presence of stable
isotope labeling in LC/MS-based untargeted metabolomics. Anal Chem.
88:621–628. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Civan MM, Marano CW, Matschinsky FW and
Peterson-Yantorno K: Prolonged incubation with elevated glucose
inhibits the regulatory response to shrinkage of cultured human
retinal pigment epithelial cells. J Membr Biol. 139:1–13. 1994.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Lei J, Zhao L, Zhang Y, Wu Y and Liu Y:
High glucose-induced podocyte injury involves activation of
mammalian target of rapamycin (mTOR)-induced endoplasmic reticulum
(ER) stress. Cell Physiol Biochem. 45:2431–2443. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ran Z, Zhang Y, Wen X and Ma J: Curcumin
inhibits high glucose-induced inflammatory injury in human retinal
pigment epithelial cells through the ROS-PI3K/AKT/mTOR signaling
pathway. Mol Med Rep. 19:1024–1031. 2019.PubMed/NCBI
|
24
|
Liu B, Wu S, Ma J, Yan S, Xiao Z, Wan L,
Zhang F, Shang M and Mao A: lncRNA GAS5 reverses EMT and tumor stem
cell-mediated gemcitabine resistance and metastasis by targeting
miR-221/SOCS3 in pancreatic cancer. Mol Ther Nucleic Acids.
13:472–482. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen X, Yang C, Xie S and Cheung E: Long
non-coding RNA GAS5 and ZFAS1 are prognostic markers involved in
translation targeted by miR-940 in prostate cancer. Oncotarget.
9:1048–1062. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ali ES, Rychkov GY and Barritt GJ:
Deranged hepatocyte intracellular Ca(2+) homeostasis and the
progression of non-alcoholic fatty liver disease to hepatocellular
carcinoma. Cell Calcium. 82:1020572019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Inoue M, Sakuta N, Watanabe S, Zhang Y,
Yoshikaie K, Tanaka Y, Ushioda R, Kato Y, Takagi J, Tsukazaki T, et
al: Structural basis of sarco/endoplasmic reticulum Ca(2+)-ATPase
2b regulation via transmembrane helix interplay. Cell Rep.
27:1221–1230.e1223. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Marino M, Stoilova T, Giorgi C, Bachi A,
Cattaneo A, Auricchio A, Pinton P and Zito E: SEPN1, an endoplasmic
reticulum-localized selenoprotein linked to skeletal muscle
pathology, counteracts hyperoxidation by means of redox-regulating
SERCA2 pump activity. Hum Mol Genet. 24:1843–1855. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Raturi A, Gutierrez T, Ortiz-Sandoval C,
Ruangkittisakul A, Herrera-Cruz MS, Rockley JP, Gesson K, Ourdev D,
Lou PH, Lucchinetti E, et al: TMX1 determines cancer cell
metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux.
J Cell Biol. 214:433–444. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ushioda R, Miyamoto A, Inoue M, Watanabe
S, Okumura M, Maegawa KI, Uegaki K, Fujii S, Fukuda Y, Umitsu M, et
al: Redox-assisted regulation of Ca2+ homeostasis in the
endoplasmic reticulum by disulfide reductase ERdj5. Proc Natl Acad
Sci USA. 113:E6055–E6063. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sundar Rajan S, Srinivasan V,
Balasubramanyam M and Tatu U: Endoplasmic reticulum (ER) stress
diabetes. Indian J Med Res. 125:411–424. 2007.PubMed/NCBI
|
32
|
Nakagawa T and Yuan J: Cross-talk between
two cysteine protease families. Activation of caspase-12 by calpain
in apoptosis. J Cell Biol. 150:887–894. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nakagawa T, Zhu H, Morishima N, Li E, Xu
J, Yankner BA and Yuan J: Caspase-12 mediates
endoplasmic-reticulum-specific apoptosis and cytotoxicity by
amyloid-beta. Nature. 403:98–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nowotny K, Castro JP, Hugo M, Braune S,
Weber D, Pignitter M, Somoza V, Bornhorst J, Schwerdtle T and Grune
T: Oxidants produced by methylglyoxal-modified collagen trigger ER
stress and apoptosis in skin fibroblasts. Free Radic Biol Med.
120:102–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Du Z, Xu S, Hu S, Yang H, Zhou Z, Sidhu K,
Miao Y, Liu Z, Shen W, Reiter RJ, et al: Melatonin attenuates
detrimental effects of diabetes on the niche of mouse
spermatogonial stem cells by maintaining Leydig cells. Cell Death
Dis. 9:9682018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Campbell GR, To RK and Spector SA: TREM-1
Protects HIV-1-infected macrophages from apoptosis through
maintenance of mitochondrial function. Mbio. 10:2019. View Article : Google Scholar
|
37
|
Donovan M and Cotter TG: Control of
mitochondrial integrity by Bcl-2 family members and
caspase-independent cell death. Biochim Biophys Acta. 1644:133–147.
2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li K, Zhang L, Xiang X, Gong S, Ma L, Xu
L, Wang G, Liu Y, Ji X, Liu S, et al: Arsenic trioxide alleviates
airway hyperresponsiveness and promotes apoptosis of CD4+ T
lymphocytes: Evidence for involvement of the ER stress-CHOP
pathway. Ir J Med Sci. 182:573–583. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhou Y, Dong B, Kim KH, Choi S, Sun Z, Wu
N, Wu Y, Scott J and Moore DD: Vitamin D receptor activation in
liver macrophages protects against hepatic endoplasmic reticulum
stress in mice. Hepatology. 71:1453–1466. 2020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang L, Wang Y, Zhang L, Xia X, Chao Y,
He R, Han C and Zhao W: ZBTB7A, a miR-663a target gene, protects
osteosarcoma from endoplasmic reticulum stress-induced apoptosis by
suppressing LncRNA GAS5 expression. Cancer Lett. 448:105–116. 2019.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang Y, Wang L, Guo H, Peng Y, Nie D, Mo J
and Ye L: Knockdown of MALAT1 attenuates high-glucose-induced
angiogenesis and inflammation via endoplasmic reticulum stress in
human retinal vascular endothelial cells. Biomed Pharmacother.
124:1096992020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu J, Wei L, Wang Z, Song S, Lin Z, Zhu
J, Ren X and Kong L: Protective effect of Liraglutide on diabetic
retinal neurodegeneration via inhibiting oxidative stress and
endoplasmic reticulum stress. Neurochem Int. 133:1046242020.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wu S, Zhu X, Guo B, Zheng T, Ren J, Zeng
W, Chen X and Ke M: Unfolded protein response pathways
correlatively modulate endoplasmic reticulum stress responses in
rat retinal muller cells. J Ophthalmol. 2019:90284832019.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Lenin R, Nagy PG, Alli S, Rao VR, Clauss
MA, Kompella UB and Gangaraju R: Critical role of endoplasmic
reticulum stress in chronic endothelial activation-induced visual
deficits in tie2-tumor necrosis factor mice. J Cell Biochem.
119:8460–8471. 2018. View Article : Google Scholar : PubMed/NCBI
|