1
|
Nouri A, Tetreault L, Singh A, Karadimas
SK and Fehlings MG: Degenerative cervical myelopathy: Epidemiology,
genetics, and pathogenesis. Spine. 40:E675–E693. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Takahashi T, Hanakita J and Minami M:
Pathophysiology of calcification and ossification of the ligamentum
flavum in the cervical spine. Neurosurg Clin N Am. 29:47–54. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Guo JJ, Luk KDK, Karppinen J, Yang H and
Cheung KMC: Prevalence, distribution, and morphology of
ossification of the ligamentum flavum: A population study of one
thousand seven hundred thirty-six magnetic resonance imaging scans.
Spine. 35:51–56. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kawaguchi Y, Yasuda T, Seki S, Nakano M,
Kanamori M, Sumi S and Kimura T: Variables affecting postsurgical
prognosis of thoracic myelopathy caused by ossification of the
ligamentum flavum. Spine J. 13:1095–1107. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ahn DK, Lee S, Moon SH, Boo KH, Chang BK
and Lee JI: Ossification of the ligamentum flavum. Asian Spine J.
8:89–96. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hirabayashi S: Ossification of the
ligamentum flavum. Spine Surg Relat Res. 1:158–163. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Yayama T, Uchida K, Kobayashi S, Kokubo Y,
Sato R, Nakajima H, Takamura T, Bangirana A, Itoh H and Baba H:
Thoracic ossification of the human ligamentum flavum:
Histopathological and immunohistochemical findings around the
ossified lesion. J Neurosurg Spine. 7:184–193. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qu X, Chen Z, Fan D, Xiang S, Sun C, Zeng
Y, Li W, Guo Z, Qi Q, Zhong W, et al: Two novel BMP-2 variants
identified in patients with thoracic ossification of the ligamentum
flavum. Eur J Hum Genet. 25:565–571. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li H, Jiang LS and Dai LY: Hormones and
growth factors in the pathogenesis of spinal ligament ossification.
Eur Spine J. 16:1075–1084. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang C, Chen Z, Meng X, Li M, Zhang L and
Huang A: The involvement and possible mechanism of pro-inflammatory
tumor necrosis factor alpha (TNF-α) in thoracic ossification of the
ligamentum flavum. PLoS One. 12:e01789862017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shunzhi Y, Zhonghai L and Ning Y:
Mechanical stress affects the osteogenic differentiation of human
ligamentum flavum cells via the BMP-Smad1 signaling pathway. Mol
Med Rep. 16:7692–7698. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Edwards DS and Clasper JC: Heterotopic
ossification: A systematic review. J R Army Med Corps. 161:315–321.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kłosiński M, Skrzat J, Walocha J and Mizia
E: Contemporary views on the ossification of the ligamenta flava.
Ortop Traumatol Rehabil. 14:495–503. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gao R, Yuan W, Yang L, Shi G and Jia L:
Clinical features and surgical outcomes of patients with thoracic
myelopathy caused by multilevel ossification of the ligamentum
flavum. Spine J. 13:1032–1038. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tsukamoto N, Maeda T, Miura H, Jingushi S,
Hosokawa A, Harimaya K, Higaki H, Kurata K and Iwamoto Y:
Repetitive tensile stress to rat caudal vertebrae inducing
cartilage formation in the spinal ligaments: A possible role of
mechanical stress in the development of ossification of the spinal
ligaments. J Neurosurg Spine. 5:234–242. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cai HX, Yayama T, Uchida K, Nakajima H,
Sugita D, Guerrero AR, Yoshida A and Baba H: Cyclic tensile strain
facilitates the ossification of ligamentum flavum through β-catenin
signaling pathway: In vitro analysis. Spine. 37:E639–E646. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Gallet A: Hedgehog morphogen: From
secretion to reception. Trends Cell Biol. 21:238–246. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang J, Andre P, Ye L and Yang YZ: The
Hedgehog signalling pathway in bone formation. Int J Oral Sci.
7:73–79. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kan C, Chen L, Hu Y, Ding N, Lu H, Li Y,
Kessler JA and Kan L: Conserved signaling pathways underlying
heterotopic ossification. Bone. 109:43–48. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Minina E, Wenzel HM, Kreschel C, Karp S,
Gaffield W, McMahon AP and Vortkamp A: BMP and Ihh/PTHrP signaling
interact to coordinate chondrocyte proliferation and
differentiation. Development. 128:4523–4534. 2001.PubMed/NCBI
|
21
|
Wongdee K, Thonapan N, Saengamnart W,
Krishnamra N and Charoenphandhu N: Bromocriptine modulates the
expression of PTHrP receptor, Indian hedgehog, and Runx2 proteins
in the growth plate of lactating rats. Mol Cell Biochem.
381:191–199. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
St-Jacques B, Hammerschmidt M and McMahon
AP: Indian hedgehog signaling regulates proliferation and
differentiation of chondrocytes and is essential for bone
formation. Genes Dev. 13:2072–2086. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Regard JB, Malhotra D, Gvozdenovic-Jeremic
J, Josey M, Chen M, Weinstein LS, Lu J, Shore EM, Kaplan FS and
Yang Y: Activation of Hedgehog signaling by loss of GNAS causes
heterotopic ossification. Nat Med. 19:1505–1512. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sugita S, Chikuda H, Takeshita K, Seichi A
and Tanaka S: Progression of ossification of the posterior
longitudinal ligament of the thoracic spine following posterior
decompression and stabilization. J Neurosurg Spine. 21:773–777.
2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ando K, Imagama S, Ito Z, Kobayashi K,
Ukai J, Muramoto A, Shinjo R, Matsumoto T, Nakashima H and Ishiguro
N: Progressive relapse of ligamentum flavum ossification following
decompressive surgery. Asian Spine J. 8:835–839. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tokuhashi Y, Ajiro Y and Umezawa N: A
patient with two re-surgeries for delayed myelopathy due to
progression of ossification of the posterior longitudinal ligaments
after cervical laminoplasty. Spine. 34:E101–E105. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Shi C, Wu H, Du D, Im HJ, Zhang Y, Hu B,
Chen H, Wang X, Liu Y, Cao P, et al: Nicotinamide
phosphoribosyltransferase inhibitor APO866 prevents IL-1β-induced
human nucleus pulposus cell degeneration via autophagy. Cell
Physiol Biochem. 49:2463–2482. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hu B, Shi C, Xu C, Cao P, Tian Y, Zhang Y,
Deng L, Chen H and Yuan W: Heme oxygenase-1 attenuates IL-1β
induced alteration of anabolic and catabolic activities in
intervertebral disc degeneration. Sci Rep. 6:211902016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Du D, Zhou Z, Zhu L, Hu X, Lu J, Shi C,
Chen F and Chen A: TNF-α suppresses osteogenic differentiation of
MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced
osteoporosis. Bone. 117:161–170. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Krane SM: Identifying genes that regulate
bone remodeling as potential therapeutic targets. J Exp Med.
201:841–843. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Karsenty G: The genetic transformation of
bone biology. Genes Dev. 13:3037–3051. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shimoyama A, Wada M, Ikeda F, Hata K,
Matsubara T, Nifuji A, Noda M, Amano K, Yamaguchi A, Nishimura R,
et al: Ihh/Gli2 signaling promotes osteoblast differentiation by
regulating Runx2 expression and function. Mol Biol Cell.
18:2411–2418. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gould A and Missailidis S: Targeting the
hedgehog pathway: The development of cyclopamine and the
development of anti-cancer drugs targeting the hedgehog pathway.
Mini Rev Med Chem. 11:200–213. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Uchida K, Yayama T, Cai HX, Nakajima H,
Sugita D, Guerrero AR, Kobayashi S, Yoshida A, Chen KB and Baba H:
Ossification process involving the human thoracic ligamentum
flavum: Role of transcription factors. Arthritis Res Ther.
13:R1442011. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Yang X, Chen Z, Meng X, Sun C, Li M, Shu
L, Fan D, Fan T, Huang AY and Zhang C: Angiopoietin-2 promotes
osteogenic differentiation of thoracic ligamentum flavum cells via
modulating the Notch signaling pathway. PLoS One. 13:e02093002018.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Park JO, Lee BH, Kang YM, Kim TH, Yoon JY,
Kim H, Kwon UH, Lee KI, Lee HM and Moon SH: Inflammatory cytokines
induce fibrosis and ossification of human ligamentum flavum cells.
J Spinal Disord Tech. 26:E6–E12. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zuscik MJ, Hilton MJ, Zhang X, Chen D and
O'Keefe RJ: Regulation of chondrogenesis and chondrocyte
differentiation by stress. J Clin Invest. 118:429–438. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Ning S, Chen Z, Fan D, Sun C, Zhang C,
Zeng Y, Li W, Hou X, Qu X, Ma Y, et al: Genetic differences in
osteogenic differentiation potency in the thoracic ossification of
the ligamentum flavum under cyclic mechanical stress. Int J Mol
Med. 39:135–143. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Incardona JP, Gaffield W, Kapur RP and
Roelink H: The teratogenic Veratrum alkaloid cyclopamine inhibits
sonic hedgehog signal transduction. Development. 125:3553–3562.
1998.PubMed/NCBI
|
41
|
Ohba S: Hedgehog Signaling in endochondral
ossification. J Dev Biol. 4:E202016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shi Y, He G, Lee WC, McKenzie JA, Silva MJ
and Long F: Gli1 identifies osteogenic progenitors for bone
formation and fracture repair. Nat Commun. 8:20432017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Day TF and Yang Y: Wnt and hedgehog
signaling pathways in bone development. J Bone Joint Surg Am. 90
(Suppl 1):19–24. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Quijada L, Callejo A, Torroja C and
Guerrero I: The patched receptor. In: Hedgehog-Gli Signaling in
Human Disease. Boston, MA: Ruiz i Altaba A: Springer, US; pp.
23–33. 2006
|
45
|
Salem O, Wang HT, Alaseem AM, Ciobanu O,
Hadjab I, Gawri R, Antoniou J and Mwale F: Naproxen affects
osteogenesis of human mesenchymal stem cells via regulation of
Indian hedgehog signaling molecules. Arthritis Res Ther.
16:R1522014. View
Article : Google Scholar : PubMed/NCBI
|