1
|
Augusteyn RC: Growth of the lens: In vitro
observations. Clin Exp Optom. 91:226–239. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pascolini D and Mariotti SP: Global
estimates of visual impairment: 2010. Br J Ophthalmol. 96:614–618.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Flaxman SR, Bourne RRA, Resnikoff S,
Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J,
Kempen JH, et al Vision Loss Expert Group of the Global Burden of
Disease Study, : Global causes of blindness and distance vision
impairment 1990–2020: A systematic review and meta-analysis. Lancet
Glob Health. 5:e1221–e1234. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhao WJ and Yan YB: Increasing
susceptibility to oxidative stress by cataract-causing crystallin
mutations. Int J Biol Macromol. 108:665–673. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Feng H, Yang Z, Bai X, Yang M, Fang Y,
Zhang X, Guo Q and Ning H: Therapeutic potential of a dual mTORC1/2
inhibitor for the prevention of posterior capsule opacification: An
in vitro study. Int J Mol Med. 41:2099–2107. 2018.PubMed/NCBI
|
6
|
Crooke A, Huete-Toral F, Colligris B and
Pintor J: The role and therapeutic potential of melatonin in
age-related ocular diseases. J Pineal Res. 63:e124302017.
View Article : Google Scholar
|
7
|
Jin X, Jin H, Shi Y, Guo Y and Zhang H:
Long Non-Coding RNA KCNQ1OT1 promotes cataractogenesis via miR-214
and activation of the Caspase-1 pathway. Cell Physiol Biochem.
42:295–305. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Choi AM, Ryter SW and Levine B: Autophagy
in human health and disease. N Engl J Med. 368:651–662. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ni Z, Gong Y, Dai X, Ding W, Wang B, Gong
H, Qin L, Cheng P, Li S, Lian J, et al: AU4S: A novel synthetic
peptide to measure the activity of ATG4 in living cells. Autophagy.
11:403–415. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang RC and Levine B: Autophagy in
cellular growth control. FEBS Lett. 584:1417–1426. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Morishita H and Mizushima N: Autophagy in
the lens. Exp Eye Res. 144:22–28. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lv W, Sui L, Yan X, Xie H, Jiang L, Geng
C, Li Q, Yao X, Kong Y and Cao J: ROS-dependent Atg4 upregulation
mediated autophagy plays an important role in Cd-induced
proliferation and invasion in A549 cells. Chem Biol Interact.
279:136–144. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
He R, Peng J, Yuan P, Xu F and Wei W:
Divergent roles of BECN1 in LC3 lipidation and autophagosomal
function. Autophagy. 11:740–747. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li M, Hou Y, Wang J, Chen X, Shao ZM and
Yin XM: Kinetics comparisons of mammalian Atg4 homologues indicate
selective preferences toward diverse Atg8 substrates. J Biol Chem.
286:7327–7338. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nakatogawa H, Ichimura Y and Ohsumi Y:
Atg8, a ubiquitin-like protein required for autophagosome
formation, mediates membrane tethering and hemifusion. Cell.
130:165–178. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Scherz-Shouval R, Shvets E, Fass E, Shorer
H, Gil L and Elazar Z: Reactive oxygen species are essential for
autophagy and specifically regulate the activity of Atg4. EMBO J.
26:1749–1760. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gil J, Ramsey D, Pawlowski P, Szmida E,
Leszczynski P, Bebenek M and Sasiadek MM: The influence of tumor
microenvironment on ATG4D gene expression in colorectal cancer
patients. Med Oncol. 35:159–167. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mao JJ, Wu LX, Wang W, Ye YY, Yang J, Chen
H, Yang QF, Zhang XY, Wang B and Chen WX: Nucleotide variation in
ATG4A and susceptibility to cervical cancer in Southwestern Chinese
women. Oncol Lett. 15:2992–3000. 2018.PubMed/NCBI
|
19
|
Antonelli M, Strappazzon F, Arisi I,
Brandi R, D'Onofrio M, Sambucci M, Manic G, Vitale I, Barilà D and
Stagni V: ATM kinase sustains breast cancer stem-like cells by
promoting ATG4C expression and autophagy. Oncotarget.
8:21692–21709. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou W, Xu J, Wang C, Shi D and Yan Q:
miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1
in lens epithelial cells. J Cell Biochem. 120:19635–19646. 2019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
De-Qian K, Yue L, Li L and Guangying Z:
Downregulation of Smac attenuates
H2O2-induced apoptosis via endoplasmic
reticulum stress in human lens epithelial cells. Medicine
(Baltimore). 96:e74192017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fernández ÁF and López-Otín C: The
functional and pathologic relevance of autophagy proteases. J Clin
Invest. 125:33–41. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang SW, Ping YF, Jiang YX, Luo X, Zhang
X, Bian XW and Yu PW: ATG4A promotes tumor metastasis by inducing
the epithelial-mesenchymal transition and stem-like properties in
gastric cells. Oncotarget. 7:39279–39292. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu PF, Tsai KL, Hsu CJ, Tsai WL, Cheng
JS, Chang HW, Shiau CW, Goan YG, Tseng HH, Wu CH, et al: Drug
repurposing screening identifies tioconazole as an ATG4 inhibitor
that suppresses autophagy and sensitizes cancer cells to
chemotherapy. Theranostics. 8:830–845. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lee JH, Rao MV, Yang DS, Stavrides P, Im
E, Pensalfini A, Huo C, Sarkar P, Yoshimori T and Nixon RA:
Transgenic expression of a ratiometric autophagy probe specifically
in neurons enables the interrogation of brain autophagy in vivo.
Autophagy. 15:543–557. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sun Y, Huang YH, Huang FY, Mei WL, Liu Q,
Wang CC, Lin YY, Huang C, Li YN, Dai HF, et al:
3′-epi-12β-hydroxyfroside, a new cardenolide, induces
cytoprotective autophagy via blocking the Hsp90/Akt/mTOR axis in
lung cancer cells. Theranostics. 8:2044–2060. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Biazik J, Vihinen H, Anwar T, Jokitalo E
and Eskelinen EL: The versatile electron microscope: An
ultrastructural overview of autophagy. Methods. 75:44–53. 2015.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Arozena AA, Adachi H, Adams CM, Adams PD, Adeli
K, et al: Guidelines for the use and interpretation of assays for
monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Runwal G, Stamatakou E, Siddiqi FH, Puri
C, Zhu Y and Rubinsztein DC: LC3-positive structures are prominent
in autophagy-deficient cells. Sci Rep. 9:101472019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bortnik S and Gorski SM: Clinical
applications of autophagy proteins in cancer: From potential
targets to biomarkers. Int J Mol Sci. 18:E14962017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fan J, Yang X, Li J, Shu Z, Dai J, Liu X,
Li B, Jia S, Kou X, Yang Y, et al: Spermidine coupled with exercise
rescues skeletal muscle atrophy from D-gal-induced aging rats
through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a
signal pathway. Oncotarget. 8:17475–17490. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang S, Ji LY, Li L and Li JM: Oxidative
stress, autophagy and pyroptosis in the neovascularization of
oxygen-induced retinopathy in mice. Mol Med Rep. 19:927–934.
2019.PubMed/NCBI
|
33
|
Yang Z and Klionsky DJ: Mammalian
autophagy: Core molecular machinery and signaling regulation. Curr
Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu L, Jin X, Hu CF, Li R, Zhou Z and Shen
CX: Exosomes derived from mesenchymal stem cells rescue myocardial
ischaemia/reperfusion injury by inducing cardiomyocyte autophagy
via AMPK and Akt pathways. Cell Physiol Biochem. 43:52–68. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao M, Sun L, Yu XJ, Miao Y, Liu JJ, Wang
H, Ren J and Zang WJ: Acetylcholine mediates AMPK-dependent
autophagic cytoprotection in H9c2 cells during
hypoxia/reoxygenation injury. Cell Physiol Biochem. 32:601–613.
2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Booth LA, Tavallai S, Hamed HA,
Cruickshanks N and Dent P: The role of cell signalling in the
crosstalk between autophagy and apoptosis. Cell Signal. 26:549–555.
2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Katheder NS, Khezri R, O'Farrell F,
Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen
T, Juhász G, et al: Microenvironmental autophagy promotes tumour
growth. Nature. 541:417–420. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kimmelman AC and White E: Autophagy and
tumor metabolism. Cell Metab. 25:1037–1043. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang H and Zhang G: Activation of
CaMKKβ-AMPK-mTOR pathway is required for autophagy induction by
β,β-dimethylacrylshikonin against lung adenocarcinoma cells.
Biochem Biophys Res Commun. 517:477–483. 2019. View Article : Google Scholar : PubMed/NCBI
|