1
|
Reijnders D, Olson KN, Liu CC, Beckers KF,
Ghosh S, Redman LM and Sones JL: Dyslipidemia and the role of
adipose tissue in early pregnancy in the BPH/5 mouse model for
preeclampsia. Am J Physiol Regul Integr Comp Physiol. 317:R49–R58.
2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kay VR, Ratsep MT, Figueiro-Filho EA and
Croy BA: Preeclampsia may influence offspring neuroanatomy and
cognitive function: A role for placental growth factor? Biol
Reprod. 101:271–283. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maged AM, Shoab AY and Dieb AS: Antepartum
and postpartum uterine artery impedance in women with
pre-eclampsia: A case control study. J Obstet Gynaecol. 39:633–638.
2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Benkő Z, Chaveeva P, de Paco Matallana C,
Zingler E, Wright A, Wright D and Nicolaides KH: Validation of
competing-risks model in screening for pre-eclampsia in twin
pregnancy by maternal factors. Ultrasound Obstet Gynecol.
53:649–654. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shin EK, Kang HY, Yang H, Jung EM and
Jeung EB: The regulation of fatty acid oxidation in human
preeclampsia. Reprod Sci. 23:1422–1433. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sun MN, Yang Z and Ma RQ: Interaction of
fatty acid oxidation with oxidative stress in preeclampsia-like
mouse model at multiple stages of gestation. Zhonghua Yi Xue Za
Zhi. 91:2343–2347. 2011.(In Chinese). PubMed/NCBI
|
7
|
Huai J, Yang Z, Yi YH and Wang GJ: Role of
mammalian target of rapamycin signaling pathway in regulation of
fatty acid oxidation in a preeclampsia-like mouse model treated
with pravastatin. Chin Med J (Engl). 132:671–679. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zárate A, Saucedo R, Valencia J, Manuel L
and Hernández M: Early disturbed placental ischemia and hypoxia
creates immune alteration and vascular disorder causing
preeclampsia. Arch Med Res. 45:519–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schoots MH, Gordijn SJ, Scherjon SA, van
Goor H and Hillebrands JL: Oxidative stress in placental pathology.
Placenta. 69:153–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Aouache R, Biquard L, Vaiman D and
Miralles F: Oxidative Stress in Preeclampsia and Placental
Diseases. Int J Mol Sci. 19:14962018. View Article : Google Scholar
|
11
|
Lecarpentier E and Tsatsaris V: Angiogenic
balance (sFlt-1/PlGF) and preeclampsia. Ann Endocrinol (Paris).
77:97–100. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Taysi S, Tascan AS, Ugur MG and Demir M:
Radicals, Oxidative/Nitrosative stress and preeclampsia. Mini Rev
Med Chem. 19:178–193. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Saito S and Nakashima A: A review of the
mechanism for poor placentation in early-onset preeclampsia: The
role of autophagy in trophoblast invasion and vascular remodeling.
J Reprod Immunol 101–102. 80–88. 2014. View Article : Google Scholar
|
14
|
Klingenberg M: The ADP-ATP translocation
in mitochondria, a membrane potential controlled transport. J Membr
Biol. 56:97–105. 1980. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O,
Bennett B and Zielonka J: Teaching the basics of reactive oxygen
species and their relevance to cancer biology: Mitochondrial
reactive oxygen species detection, redox signaling, and targeted
therapies. Redox Biol. 15:347–362. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Samartsev VN, Vedernikov AA, Khoroshavina
EI and Dubinin MV: Comparative study of free oxidation and ATP
synthesis in mitochondria in the liver of different animal species.
J Evol Biochem Phys. 53:245–247. 2017. View Article : Google Scholar
|
17
|
Kubli DA, Zhang X, Lee Y, Hanna RA,
Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN and
Gustafsson AB: Parkin protein deficiency exacerbates cardiac injury
and reduces survival following myocardial infarction. J Biol Chem.
288:915–926. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tusi SK, Khodagholi F and Sanati MH:
Mitophagy pathway is induced by alginate oligosaccharide in PC12
cells exposed to oxidative stress. Alzheimers Dement. 9:3072013.
View Article : Google Scholar
|
19
|
Oyewole AO and Birch-Machin MA:
Mitochondria-targeted antioxidants. FASEB J. 29:4766–4771. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang XD, Qi L, Wu JC and Qin ZH: DRAM1
regulates autophagy flux through lysosomes. PLoS One. 8:e632452013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu D, Li R, Guo X, Pang L, Zang Y, Liu K
and Chen D: DNA damage regulated autophagy modulator 1 recovers the
function of apoptosis-stimulating of p53 protein 2 on inducing
apoptotic cell death in Huh7.5 cells. Oncol Lett. 15:9333–9338.
2018.PubMed/NCBI
|
22
|
Nagata M, Arakawa S, Yamaguchi H, Torii S,
Endo H, Tsujioka M, Honda S, Nishida Y, Konishi A and Shimizu S:
Dram1 regulates DNA damage-induced alternative autophagy. Cell
Stress. 2:55–65. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cho A and Seung-Hyeok S: Ethical
Guidelines for Use of Experimental Animals in Biomedical Research.
J Bacteriol Virol. 43:18–26. 2013. View Article : Google Scholar
|
24
|
Wilde E, Aubdool AA, Thakore P, Baldissera
L Jr, Alawi KM, Keeble J, Nandi M and Brain SD: Tail-Cuff technique
and its influence on central blood pressure in the mouse. J Am
Heart Assoc. 6:e0052042017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Saito T: In vivo electroporation in the
embryonic mouse central nervous system. Nat Protoc. 1:1552–1558.
2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Albers RE, Kaufman MR, Natale BV, Keoni C,
Kulkarni-Datar K, Min S, Williams CR, Natale DRC and Brown TL:
Trophoblast-Specific expression of Hif-1α results in
Preeclampsia-Like symptoms and fetal growth restriction. Sci Rep.
9:27422019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Iriyama T, Wang W, Parchim NF, Song A,
Blackwell SC, Sibai BM, Kellems RE and Xia Y: Hypoxia-independent
upregulation of placental hypoxia inducible factor-1α gene
expression contributes to the pathogenesis of preeclampsia.
Hypertension. 65:1307–1315. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zadora J, Singh M, Herse F, Przybyl L,
Haase N, Golic M, Yung HW, Huppertz B, Cartwright JE, Whitley G, et
al: Disturbed placental imprinting in preeclampsia leads to altered
expression of DLX5, a Human-Specific early trophoblast marker.
Circulation. 136:1824–1839. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Samimi M, Pourhanifeh MH, Mehdizadehkashi
A, Eftekhar T and Asemi Z: The role of inflammation, oxidative
stress, angiogenesis, and apoptosis in the pathophysiology of
endometriosis: Basic science and new insights based on gene
expression. J Cell Physiol. 234:19384–19392. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu MY, Yiang GT, Lai TT and Li CJ: The
oxidative stress and mitochondrial dysfunction during the
pathogenesis of diabetic retinopathy. Oxid Med Cell Longev.
2018:34201872018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hassan M, Watari H, AbuAlmaaty A, Ohba Y
and Sakuragi N: Apoptosis and molecular targeting therapy in
cancer. Biomed Res Int. 2014:1508452014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Demendi C, Börzsönyi B, Végh V, Nagy ZB,
Rigó J Jr, Pajor A and Joó JG: Gene expression patterns of the
Bcl-2 and Bax genes in preterm birth. Acta Obstet Gynecol Scand.
91:1212–1217. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Irani RA, Zhang Y, Blackwell SC, Zhou CC,
Ramin SM, Kellems RE and Xia Y: The detrimental role of angiotensin
receptor agonistic autoantibodies in intrauterine growth
restriction seen in preeclampsia. J Exp Med. 206:2809–2822. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Han Y, Yang Z, Ding X, Yu H and Yi Y:
Expression of long chain fatty acid oxidase in maternal and fetal
tissues in preeclampsia-like mouse model in mid-gestation. Zhonghua
Yi Xue Za Zhi. 95:26–29. 2015.(In Chinese). PubMed/NCBI
|
35
|
Whitley BN, Engelhart EA and Hoppins S:
Mitochondrial dynamics and their potential as a therapeutic target.
Mitochondrion. 49:269–283. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Koch RE, Josefson CC and Hill GE:
Mitochondrial function, ornamentation, and immunocompetence. Biol
Rev Camb Philos Soc. 92:1459–1474. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Adam-Vizi V: Production of reactive oxygen
species in brain mitochondria: Contribution by electron transport
chain and non-electron transport chain sources. Antioxid Redox
Signal. 7:1140–1149. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yoo SM and Jung YK: A molecular approach
to mitophagy and mitochondrial dynamics. Mol Cells. 41:18–26.
2018.PubMed/NCBI
|
39
|
Villa E, Marchetti S and Ricci JE: No
Parkin Zone: Mitophagy without Parkin. Trends Cell Biol.
28:882–895. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Guzmán-Lastra F, Kaiser A and Löwen H:
Fission and fusion scenarios for magnetic microswimmer clusters.
Nat Commun. 7:135192016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kanki T, Klionsky DJ and Okamoto K:
Mitochondria autophagy in yeast. Antioxid Redox Signal.
14:1989–2001. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bartha JL, Visiedo F, Fernández-Deudero A,
Bugatto F and Perdomo G: Decreased mitochondrial fatty acid
oxidation in placentas from women with preeclampsia. Placenta.
33:132–134. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Beretta S, Sala G, Mattavelli L, Ceresa C,
Casciati A, Ferri A, Carrì MT and Ferrarese C: Mitochondrial
dysfunction due to mutant copper/zinc superoxide dismutase
associated with amyotrophic lateral sclerosis is reversed by
N-acetylcysteine. Neurobiol Dis. 13:213–221. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ilhan N, Ilhan N and Simsek M: The changes
of trace elements, malondialdehyde levels and superoxide dismutase
activities in pregnancy with or without preeclampsia. Clin Biochem.
35:393–397. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Xuan RR, Niu TT and Chen HM: Astaxanthin
blocks preeclampsia progression by suppressing oxidative stress and
inflammation. Mol Med Rep. 14:2697–2704. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Feng YL, Yin YX, Ding J, Yuan H, Yang L,
Xu JJ and Hu LQ: Alpha-1-antitrypsin suppresses oxidative stress in
preeclampsia by inhibiting the p38MAPK signaling pathway: An in
vivo and in vitro study. PLoS One. 12:e01737112017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Fekete A, Vér A, Bögi K, Treszl A and Rigó
J Jr: Is preeclampsia associated with higher frequency of HSP70
gene polymorphisms? Eur J Obstet Gynecol Reprod Biol. 126:197–200.
2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yan JY and Xu X: Relationships between
concentrations of free fatty acid in serum and oxidative-damage
levels in placental mitochondria and preeclampsia. Zhonghua Fu Chan
Ke Za Zhi. 47:412–417. 2012.(In Chinese). PubMed/NCBI
|
49
|
Hilali N, Kocyigit A, Demir M, Camuzcuoglu
A, Incebiyik A, Camuzcuoglu H, Vural M and Taskin A: DNA damage and
oxidative stress in patients with mild preeclampsia and offspring.
Eur J Obstet Gynecol Reprod Biol. 170:377–380. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Salomon C, Yee SW, Mitchell MD and Rice
GE: The possible role of extravillous trophoblast-derived exosomes
on the uterine spiral arterial remodeling under both normal and
pathological conditions. Biomed Res Int. 2014:6931572014.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Salles AM, Galvao TF, Silva MT, Motta LCD
and Pereira MG: Antioxidants for preventing preeclampsia: A
systematic review. ScientificWorldJournal. 2012:2434762012.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Thomas T, Jophy R, Mhaskar A and Misquith
D: Are we increasing serious maternal morbidity by postponing
termination of pregnancy in severe pre-eclampsia/eclampsia? J
Obstet Gynaecol. 25:347–351. 2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
Vishnyakova PA, Volodina MA, Tarasova NV,
Marey MV, Tsvirkun DV, Vavina OV, Khodzhaeva ZS, Kan NE, Menon R,
Vysokikh MY and Sukhikh GT: Mitochondrial role in adaptive response
to stress conditions in preeclampsia. Sci Rep. 6:324102016.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Zsengellér ZK, Rajakumar A, Hunter JT,
Salahuddin S, Rana S, Stillman IE and Ananth Karumanchi S:
Trophoblast mitochondrial function is impaired in preeclampsia and
correlates negatively with the expression of soluble fms-like
tyrosine kinase 1. Pregnancy Hypertens. 6:313–319. 2016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Abad C, Vargas FR, Zoltan T, Proverbio T,
Piñero S, Proverbio F and Marín R: Magnesium sulfate affords
protection against oxidative damage during severe preeclampsia.
Placenta. 36:179–185. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kumar A, Davuluri G, Welch N, Kim A,
Gangadhariah M, Allawy A, Priyadarshini A, McMullen MR, Sandlers Y,
Willard B, et al: Oxidative stress mediates ethanol-induced
skeletal muscle mitochondrial dysfunction and dysregulated protein
synthesis and autophagy. Free Radic Biol Med. 145:284–299. 2019.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Nakashima A, Tsuda S, Kusabiraki T, Aoki
A, Ushijima A, Shima T, Cheng SB, Sharma S and Saito S: Current
understanding of autophagy in pregnancy. Int J Mol Sci.
20:23422019. View Article : Google Scholar
|
58
|
Ausman J, Abbade J, Ermini L, Farrell A,
Tagliaferro A, Post M and Caniggia I: Ceramide-induced BOK promotes
mitochondrial fission in preeclampsia. Cell Death Dis. 9:2982018.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Zhang J, Qu B, Yu W, Zhu Y, Yan X, Shen H
and Zhao J: Role of surface ectoderm-specific mitofusin 2 in the
corneal morphologic development of mice. Am J Transl Res.
11:3620–3628. 2019.PubMed/NCBI
|
60
|
Chapple SJ, Cheng X and Mann GE: Effects
of 4-hydroxynonenal on vascular endothelial and smooth muscle cell
redox signaling and function in health and disease. Redox Biol.
1:319–331. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Wakabayashi J, Zhang Z, Wakabayashi N,
Tamura Y, Fukaya M, Kensler TW, Iijima M and Sesaki H: The
dynamin-related GTPase Drp1 is required for embryonic and brain
development in mice. J Cell Biol. 186:805–816. 2009. View Article : Google Scholar : PubMed/NCBI
|
62
|
Lorin S, Borges A, Ribeiro Dos Santos L,
Souquère S, Pierron G, Ryan KM, Codogno P and Djavaheri-Mergny M:
c-Jun NH2-terminal kinase activation is essential for
DRAM-dependent induction of autophagy and apoptosis in
2-methoxyestradiol-treated ewing sarcoma cells. Cancer Res.
69:6924–6931. 2009. View Article : Google Scholar : PubMed/NCBI
|
63
|
Nguyen HB, Loomba M, Yang JJ, Jacobsen G,
Shah K, Otero RM, Suarez A, Parekh H, Jaehne A and Rivers EP: Early
lactate clearance is associated with biomarkers of inflammation,
coagulation, apoptosis, organ dysfunction and mortality in severe
sepsis and septic shock. J Inflamm (Lond). 7:62010. View Article : Google Scholar : PubMed/NCBI
|
64
|
Marriott HM, Hellewell PG, Cross SS, Ince
PG, Whyte MK and Dockrell DH: Decreased alveolar macrophage
apoptosis is associated with increased pulmonary inflammation in a
murine model of pneumococcal pneumonia. J Immunol. 177:6480–6488.
2006. View Article : Google Scholar : PubMed/NCBI
|
65
|
Jiang Y and Chen Y and Chen Y: Knockdown
of JARID2 inhibits the viability and migration of placenta
trophoblast cells in preeclampsia. Mol Med Rep. 16:3594–3599,
20174. View Article : Google Scholar : PubMed/NCBI
|
66
|
Arroyo J, Price M, Straszewski-Chavez S,
Torry RJ, Mor G and Torry DS: XIAP protein is induced by placenta
growth factor (PLGF) and decreased during preeclampsia in
trophoblast cells. Syst Biol Reprod Med. 60:263–273. 2014.
View Article : Google Scholar : PubMed/NCBI
|