1
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ueno T and Komatsu M: Autophagy in the
liver: Functions in health and disease. Nat Rev Gastroenterol
Hepatol. 14:170–184. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xu K, Yang Y, Yan M, Zhan J, Fu X and
Zheng X: Autophagy plays a protective role in free cholesterol
overload-induced death of smooth muscle cells. J Lipid Res.
51:2581–2590. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Singh R, Kaushik S, Wang Y, Xiang Y, Novak
I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates
lipid metabolism. Nature. 458:1131–1135. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu K and Czaja MJ: Regulation of lipid
stores and metabolism by lipophagy. Cell Death Differ. 20:3–11.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
He Q, Mei D, Sha S, Fan S, Wang L and Dong
M: ERK-dependent mTOR pathway is involved in berberine-induced
autophagy in hepatic steatosis. J Mol Endocrinol. 57:251–260. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Vaux DL, Haecker G and Strasser A: An
evolutionary perspective on apoptosis. Cell. 76:777–779. 1994.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Williams GT: Programmed cell death:
Apoptosis and oncogenesis. Cell. 65:1097–1098. 1991. View Article : Google Scholar : PubMed/NCBI
|
9
|
Radi E, Formichi P, Battisti C and
Federico A: Apoptosis and oxidative stress in neurodegenerative
diseases. J Alzheimers Dis. 42 (Suppl 3):S125–S152. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Mizuno Y, Mochizuki H, Sugita Y and Goto
K: Apoptosis in neurodegenerative disorders. Intern Med.
37:192–193. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Eizirik DL and Darville MI: Beta-cell
apoptosis and defense mechanisms: Lessons from type 1 diabetes.
Diabetes. 50 (Suppl 1):S64–S69. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chandra J, Zhivotovsky B, Zaitsev S,
Juntti-Berggren L, Berggren PO and Orrenius S: Role of apoptosis in
pancreatic beta-cell death in diabetes. Diabetes. 50 (Suppl
1):S44–S47. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Moscat J and Diaz-Meco MT: p62 at the
crossroads of autophagy, apoptosis, and cancer. Cell.
137:1001–1004. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Levine B, Sinha SC and Kroemer G: Bcl-2
family members: Dual regulators of apoptosis and autophagy.
Autophagy. 4:600–606. 2008. View Article : Google Scholar
|
15
|
Wang J: Beclin 1 bridges autophagy,
apoptosis and differentiation. Autophagy. 4:947–948. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Albers E and Muller BW: Cyclodextrin
derivatives in pharmaceutics. Crit Rev Ther Drug Carrier Syst.
12:311–337. 1995. View Article : Google Scholar : PubMed/NCBI
|
17
|
Brewster ME and Loftsson T: The use of
chemically modified cyclodextrins in the development of
formulations for chemical delivery systems. Pharmazie. 57:94–101.
2002.PubMed/NCBI
|
18
|
Stella VJ and He Q: Cyclodextrins. Toxicol
Pathol. 36:30–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Coisne C, Tilloy S, Monflier E, Wils D,
Fenart L and Gosselet F: Cyclodextrins as emerging therapeutic
tools in the treatment of cholesterol-associated vascular and
neurodegenerative diseases. Molecules. 21:17482016. View Article : Google Scholar
|
20
|
Ottinger EA, Kao ML, Carrillo-Carrasco N,
Yanjanin N, Shankar RK, Janssen M, Brewster M, Scott I, Xu X,
Cradock J, et al: Collaborative development of
2-hydroxypropyl-β-cyclodextrin for the treatment of Niemann-Pick
type C1 disease. Curr Top Med Chem. 14:330–339. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zimmer S, Grebe A, Bakke SS, Bode N,
Halvorsen B, Ulas T, Skjelland M, De Nardo D, Labzin LI, Kerksiek
A, et al: Cyclodextrin promotes atherosclerosis regression via
macrophage reprogramming. Sci Transl Med. 8:333ra3502016.
View Article : Google Scholar
|
22
|
Gould S and Scott RC:
2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): A toxicology
review. Food Chem Toxicol. 43:1451–1459. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tamura A and Yui N:
β-Cyclodextrin-threaded biocleavable polyrotaxanes ameliorate
impaired autophagic flux in Niemann-Pick type C disease. J Biol
Chem. 290:9442–9454. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang DS, Stavrides P, Kumar A, Jiang Y,
Mohan PS, Ohno M, Dobrenis K, Davidson CD, Saito M, Pawlik M, et
al: Cyclodextrin has conflicting actions on autophagy flux in vivo
in brains of normal and Alzheimer model mice. Hum Mol Genet.
26:843–859. 2017.PubMed/NCBI
|
25
|
Yokoo M, Kubota Y, Motoyama K, Higashi T,
Taniyoshi M, Tokumaru H, Nishiyama R, Tabe Y, Mochinaga S, Sato A,
et al: 2-Hydroxypropyl-β-Cyclodextrin acts as a novel anticancer
agent. PLoS One. 10:e01419462015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Huang T, Huang Y, Huang Y, Yang Y, Zhao Y
and Martyniuk CJ: Toxicity assessment of the herbicide acetochlor
in the human liver carcinoma (HepG2) cell line. Chemosphere.
243:1253452020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Young MM, Takahashi Y, Khan O, Park S,
Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, et al:
Autophagosomal membrane serves as platform for intracellular
death-inducing signaling complex (iDISC)-mediated caspase-8
activation and apoptosis. J Biol Chem. 287:12455–12468. 2012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Fu Z, Cheng X, Kuang J, Feng H, Chen L,
Liang J, Shen X, Yuen S, Peng C, Shen B, et al: CQ sensitizes human
pancreatic cancer cells to gemcitabine through the lysosomal
apoptotic pathway via reactive oxygen species. Mol Oncol.
12:529–544. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD,
Adeli K, et al: Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Manning BD and Toker A: AKT/PKB signaling:
Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pan JA, Ullman E, Dou Z and Zong WX:
Inhibition of protein degradation induces apoptosis through a
microtubule-associated protein 1 light chain 3-mediated activation
of caspase-8 at intracellular membranes. Mol Cell Biol.
31:3158–3170. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mahammad S and Parmryd I: Cholesterol
depletion using methyl-β-cyclodextrin. Methods Mol Biol.
1232:91–102. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mollinedo F and Gajate C: Lipid rafts as
major platforms for signaling regulation in cancer. Adv Biol Regul.
57:130–146. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhuang L, Kim J, Adam RM, Solomon KR and
Freeman MR: Cholesterol targeting alters lipid raft composition and
cell survival in prostate cancer cells and xenografts. J Clin
Invest. 115:959–968. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu R, Li J, Zhang T, Zou L, Chen Y, Wang
K, Lei Y, Yuan K, Li Y, Lan J, et al: Itraconazole suppresses the
growth of glioblastoma through induction of autophagy: Involvement
of abnormal cholesterol trafficking. Autophagy. 10:1241–1255. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Oh HY, Lee EJ, Yoon S, Chung BH, Cho KS
and Hong SJ: Cholesterol level of lipid raft microdomains regulates
apoptotic cell death in prostate cancer cells through EGFR-mediated
Akt and ERK signal transduction. Prostate. 67:1061–1069. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Oh HY, Leem J, Yoon SJ, Yoon S and Hong
SJ: Lipid raft cholesterol and genistein inhibit the cell viability
of prostate cancer cells via the partial contribution of
EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor.
Biochem Biophys Res Commun. 393:319–324. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kuwano K, Araya J, Hara H, Minagawa S,
Takasaka N, Ito S, Kobayashi K and Nakayama K: Cellular senescence
and autophagy in the pathogenesis of chronic obstructive pulmonary
disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir
Investig. 54:397–406. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kizilarslanoglu MC and Ulger Z: Role of
autophagy in the pathogenesis of Alzheimer disease. Turk J Med Sci.
45:998–1003. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li J and Yuan J: Caspases in apoptosis and
beyond. Oncogene. 27:6194–6206. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fulda S and Debatin KM: Extrinsic versus
intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene.
25:4798–4811. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lavrik IN, Golks A and Krammer PH:
Caspases: Pharmacological manipulation of cell death. J Clin
Invest. 115:2665–2672. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Pan JA, Fan Y, Gandhirajan RK, Madesh M
and Zong WX: Hyperactivation of the mammalian degenerin MDEG
promotes caspase-8 activation and apoptosis. J Biol Chem.
288:2952–2963. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Nagata S: Apoptosis by death factor. Cell.
88:355–365. 1997. View Article : Google Scholar : PubMed/NCBI
|
47
|
Keller N, Ozmadenci D, Ichim G and Stupack
D: Caspase-8 function, and phosphorylation, in cell migration.
Semin Cell Dev Biol. 82:105–117. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Song W, Wang F, Lotfi P, Sardiello M and
Segatori L: 2-Hydroxypropyl-β-cyclodextrin promotes transcription
factor EB-mediated activation of autophagy: Implications for
therapy. J Biol Chem. 289:10211–10222. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Raben N and Puertollano R: TFEB and TFE3:
Linking lysosomes to cellular adaptation to stress. Annu Rev Cell
Dev Biol. 32:255–278. 2016. View Article : Google Scholar : PubMed/NCBI
|