A potential role for astaxanthin in the treatment of bone diseases (Review)
- Authors:
- Maria Teresa Valenti
- Massimiliano Perduca
- Maria Grazia Romanelli
- Monica Mottes
- Luca Dalle Carbonare
-
Affiliations: Department of Medicine, University of Verona, 37100 Verona, Italy, Department of Biotechnology, University of Verona, 37100 Verona, Italy, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy - Published online on: June 26, 2020 https://doi.org/10.3892/mmr.2020.11284
- Pages: 1695-1701
This article is mentioned in:
Abstract
Kopp W: How Western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes. 12:2221–2236. 2019. View Article : Google Scholar : PubMed/NCBI | |
Badley EM and Davis AM: Meeting the challenge of the ageing of the population: Issues in access to specialist care for arthritis. Best Pract Res Clin Rheumatol. 26:599–609. 2012. View Article : Google Scholar : PubMed/NCBI | |
Naylor RM, Baker DJ and van Deursen JM: Senescent cells: A novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther. 93:105–116. 2013. View Article : Google Scholar : PubMed/NCBI | |
Verstraeten SP, van Oers HA and Mackenbach JP: Differences in life expectancy between four Western countries and their Caribbean dependencies, 1980–2014. Eur J Public Health. 30:85–92. 2020.PubMed/NCBI | |
Montero JA, Lorda-Diez CI and Hurlé JM: Regenerative medicine and connective tissues: Cartilage versus tendon. J Tissue Eng Regen Med. 6:337–347. 2012. View Article : Google Scholar : PubMed/NCBI | |
Escobar KA, Cole NH, Mermier CM and VanDusseldorp TA: Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell. 18:e128762019. View Article : Google Scholar : PubMed/NCBI | |
Mohd Sahardi NF and Makpol S: Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: Review of current evidence. Evid Based Complement Alternat Med. 2019:50543952019. View Article : Google Scholar : PubMed/NCBI | |
Sachdeva V, Roy A and Bharadvaja N: Current prospective of nutraceuticals: A review. Curr Pharm Biotechnol. Jan 29–2020.(Epub ahead of print). doi: 10.2174/1389201021666200130113441. View Article : Google Scholar : PubMed/NCBI | |
Sj S, Veerabhadrappa B, Subramaniyan S and Dyavaiah M: Astaxanthin enhances the longevity of Saccharomyces cerevisiae by decreasing oxidative stress and apoptosis. FEMS Yeast Res. Jan 1–2019.(Epub ahead of print). doi: 10.1093/femsyr/foy113. PubMed/NCBI | |
El-Baz FK, Hussein RA, Abdel Jaleel GA and Saleh DO: Astaxanthin-rich Haematococcus pluvialis Algal hepatic modulation in D-galactose-induced aging in rats: Role of Nrf2. Adv Pharm Bull. 8:523–528. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Ma S, Li Y, Sun Y, Zhang K, Zhou Q and Yu R: Evaluate the activity of sodium butyrate to prevent osteoporosis in rats by promoting osteal GSK-3beta/Nrf2 signaling and mitochondrial function. J Agric Food Chem. 68:6588–6603. 2020. View Article : Google Scholar : PubMed/NCBI | |
Domazetovic V, Marcucci G, Iantomasi T, Brandi ML and Vincenzini MT: Oxidative stress in bone remodeling: Role of antioxidants. Clin Cases Miner Bone Metab. 14:209–216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang C, Qiu H, Yuan Y, Chen K, Cao Z, Xiang Tan R, Tickner J, Xu J and Zou J: Asperpyrone A attenuates RANKL-induced osteoclast formation through inhibiting NFATc1, Ca2+ signalling and oxidative stress. J Cell Mol Med. 23:8269–8279. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prideaux M, Kitase Y, Kimble M, OConnell TM and Bonewald LF: Taurine, an osteocyte metabolite, protects against oxidative stress-induced cell death and decreases inhibitors of the Wnt/β-catenin signaling pathway. Bone. 137:1153742020. View Article : Google Scholar : PubMed/NCBI | |
Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, Rhee EJ, Han JH, Song KH, Cha BY, et al: Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int. 87:226–235. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lingappan K: NF-κB in oxidative stress. Curr Opin Toxicol. 7:81–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yin Y, Yao L, Lin Z, Sun S, Zhang J and Li X: TNF-α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR-335-5p. Mol Med Rep. May 18–2020.(Epub ahead of print). doi: 10.3892/mmr.2020.11152. | |
Marahleh A, Kitaura H, Ohori F, Kishikawa A, Ogawa S, Shen WR, Qi J, Noguchi T, Nara Y and Mizoguchi I: TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front Immunol. 10:29252019. View Article : Google Scholar : PubMed/NCBI | |
Nanes MS: Tumor necrosis factor-alpha: Molecular and cellular mechanisms in skeletal pathology. Gene. 321:1–15. 2003. View Article : Google Scholar : PubMed/NCBI | |
Osta B, Benedetti G and Miossec P: Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol. 5:482014. View Article : Google Scholar : PubMed/NCBI | |
Ha H, Kwak HB, Lee SW, Jin HM, Kim HM, Kim HH and Lee ZH: Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res. 301:119–127. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N and Lee SY: A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood. 106:852–859. 2005. View Article : Google Scholar : PubMed/NCBI | |
Azizieh FY, Shehab D, Jarallah KA, Gupta R and Raghupathy R: Circulatory levels of RANKL, OPG, and oxidative stress markers in postmenopausal women with normal or low bone mineral density. Biomark Insights. 14:11772719198438252019. View Article : Google Scholar : PubMed/NCBI | |
Azizieh F, Raghupathy R, Shehab D, Al-Jarallah K and Gupta R: Cytokine profiles in osteoporosis suggest a proresorptive bias. Menopause. 24:1057–1064. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pansini F, Mollica G and Bergamini CM: Management of the menopausal disturbances and oxidative stress. Curr Pharm Des. 11:2063–2073. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS and Goldring SR: Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol. 152:943–951. 1998.PubMed/NCBI | |
Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E and Goldring SR: Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 43:250–258. 2000. View Article : Google Scholar : PubMed/NCBI | |
Carter S, Braem K and Lories RJ: The role of bone morphogenetic proteins in ankylosing spondylitis. Ther Adv Musculoskelet Dis. 4:293–299. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hreggvidsdottir HS, Noordenbos T and Baeten DL: Inflammatory pathways in spondyloarthritis. Mol Immunol. 57:28–37. 2014. View Article : Google Scholar : PubMed/NCBI | |
Braun J and Sieper J: Ankylosing spondylitis. Lancet. 369:1379–1390. 2007. View Article : Google Scholar : PubMed/NCBI | |
van der Heijde D, Salonen D, Weissman BN, Landewé R, Maksymowych WP, Kupper H, Ballal S, Gibson E and Wong R; Canadian (M03-606) study group; ATLAS study group, : Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther. 11:R1272009. View Article : Google Scholar : PubMed/NCBI | |
Yuan JP, Peng J, Yin K and Wang JH: Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 55:150–165. 2011. View Article : Google Scholar : PubMed/NCBI | |
Milani A, Basirnejad M, Shahbazi S and Bolhassani A: Carotenoids: Biochemistry, pharmacology and treatment. Br J Pharmacol. 174:1290–1324. 2017. View Article : Google Scholar : PubMed/NCBI | |
Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V and Sassi JF: Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Mar Drugs. 17:6402019. View Article : Google Scholar | |
Davies BH: Carotenoid metabolism in animals: A biochemists view. Pure Appl Chem. 57:679–684. 1985. View Article : Google Scholar | |
Lorenz RT and Cysewski GR: Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160–167. 2000. View Article : Google Scholar : PubMed/NCBI | |
Roche F: Astaxanthin as a Pigmenter in Salmon Feed, Color Additive Petition 7C02 1 1, United States Food and Drug Administration. Astaxanthin: Human Food Safety Summary. Hoffman-La Roche Ltd. (Basel). 431987. | |
Higuera-Ciapara I, Félix-Valenzuela L and Goycoolea FM: Astaxanthin: A review of its chemistry and applications. Crit Rev Food Sci Nutr. 46:185–196. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kothari D, Lee JH, Chon JW, Seo KH and Kim SK: Improved astaxanthin production by Xanthophyllomyces dendrorhous SK984 with oak leaf extract and inorganic phosphate supplementation. Food Sci Biotechnol. 28:1171–1176. 2019. View Article : Google Scholar : PubMed/NCBI | |
Capelli B, Talbott S and Ding LX: Astaxanthin sources: Suitability for human health and nutrition. Funct Food Health Dis. 9:430–445. 2019. View Article : Google Scholar | |
McCoy M: Astaxanthin market a hard one to crack. Chem Eng News. 77:15–17. 1999. View Article : Google Scholar | |
Fraser PD, Miura Y and Misawa N: In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem. 272:6128–6135. 1997. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Shnimizu M and Moriwaki H: Cancer chemoprevention by carotenoids. Molecules. 17:3202–3242. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kavitha K, Kowshik J, Kishore TKK, Baba AB and Nagini S: Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer. Biochim Biophys Acta. 1830:4433–4444. 2013. View Article : Google Scholar : PubMed/NCBI | |
Satoh A, Tsuji S, Okada Y, Murakami N, Urami M, Nakagawa K, Ishikura M, Katagiri M, Koga Y and Shirasawa T: Preliminary clinical evaluation of toxicity and efficacy of a new astaxanthin-rich Haematococcus pluvialis extract. J Clin Biochem Nutr. 44:280–284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bhuvaneswari S, Yogalakshmi B, Sreeja S and Anuradha CV: Astaxanthin reduces hepatic endoplasmic reticulum stress and nuclear factor-κB-mediated inflammation in high fructose and high fat diet-fed mice. Cell Stress Chaperones. 19:183–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kidd P: Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev. 16:355–364. 2011.PubMed/NCBI | |
Johnson EA and An GH: Astaxanthin from microbial sources. Crit Rev Biotechnol. 11:297–326. 1991. View Article : Google Scholar | |
Yuan JP, Gong XD and Chen F: Separation and analysis of carotenoids and chlorophylls in Haematococcus lacustris by high-performance liquid chromatography photodiode array detection. J Agric Food Chem. 45:1952–1956. 1997. View Article : Google Scholar | |
Casella P, Iovine A, Mehariya S, Marino T, Musmarra D and Molino A: Smart method for carotenoids characterization in Haematococcus pluvialis red phase and evaluation of astaxanthin thermal stability. Antioxidants. 9:4222020. View Article : Google Scholar | |
Shah MM, Liang Y, Cheng JJ and Daroch M and Daroch M: Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front Plant Sci. 7:5312016. View Article : Google Scholar : PubMed/NCBI | |
McCarty MF and Lerner A: Nutraceuticals targeting generation and oxidant activity of peroxynitrite may aid prevention and control of Parkinsons disease. Int J Mol Sci. 21:36242020. View Article : Google Scholar | |
Alves A, Sousa E, Kijjoa A and Pinto M: Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules. 25:25362020. View Article : Google Scholar | |
Menin B, Santabarbara S, Lami A, Musazzi S, Villafiorita Monteleone F and Casazza AP: Non-endogenous ketocarotenoid accumulation in engineered Synechocystis sp. PCC 6803. Physiol Plant. 166:403–412. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fakhri S, Abbaszadeh F, Dargahi L and Jorjani M: Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res. 136:1–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tachaprutinun A, Udomsup T, Luadthong C and Wanichwecharungruang S: Preventing the thermal degradation of astaxanthin through nanoencapsulation. Int J Pharm. 374:119–124. 2009. View Article : Google Scholar : PubMed/NCBI | |
Küçüködük A, Helvacioglu F, Haberal N, Dagdeviren A, Bacanli D, Yilmaz G and Akkoyun I: Antiproliferative and anti-apoptotic effect of astaxanthin in an oxygen-induced retinopathy mouse model. Can J Ophthalmol. 54:65–74. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan JP and Chen F: Isomerization of trans-astaxanthin to cis-isomers in organic solvents. J Agric Food Chem. 47:3656–3660. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Hu S, Fleming E, Lee JY and Luo Y: Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity. Int J Biol Macromol. 151:747–756. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhang S, McClements DJ, Wang D and Xu Y: Design of astaxanthin-loaded core-shell nanoparticles consisting of chitosan oligosaccharides and poly (lactic-co-glycolic acid): Enhancement of water solubility, stability, and bioavailability. J Agric Food Chem. 67:5113–5121. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tamjidi F, Shahedi M, Varshosaz J and Nasirpour A: Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze-thawing. J Food Sci Technol. 54:3132–3141. 2017. View Article : Google Scholar : PubMed/NCBI | |
Machado FR Jr, Trevisol TC, Boschetto DL, Burkert JF, Ferreira SR, Oliveira JV and Burkert CA: Technological process for cell disruption, extraction and encapsulation of astaxanthin from Haematococcus pluvialis. J Biotechnol. 218:108–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bustamante A, Masson L, Velasco J, Del Valle JM and Robert P: Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: Kinetic stability of astaxanthin and alpha-tocopherol. Food Chem. 190:1013–1021. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang JL, Ni H and Zhu MJ: Disruption of Phaffia rhodozyma cells and preparation of microencapsulated astaxanthin with high water solubility. Food Sci Biotechnol. 28:111–120. 2018. View Article : Google Scholar : PubMed/NCBI | |
Salatti-Dorado JA, García-Gómez D, Rodriguez-Ruiz V, Gueguen V, Pavon-Djavid G and Rubio S: Multifunctional green supramolecular solvents for cost-effective production of highly stable astaxanthin-rich formulations from Haematococcus pluvialis. Food Chem. 279:294–302. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin SF, Chen YC, Chen RN, Chen LC, Ho HO, Tsung YH, Sheu MT and Liu DZ: Improving the stability of astaxanthin by microencapsulation in calcium alginate beads. PLoS One. 11:e01536852016. View Article : Google Scholar : PubMed/NCBI | |
Niizawa I, Espinaco BY, Zorrilla SE and Sihufe GA: Natural astaxanthin encapsulation: Use of response surface methodology for the design of alginate beads. Int J Biol Macromol. 121:601–608. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hama S, Uenishi S, Yamada A, Ohgita T, Tsuchiya H, Yamashita E and Kogure K: Scavenging of hydroxyl radicals in aqueous solution by astaxanthin encapsulated in liposomes. Biol Pharm Bull. 35:2238–2242. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chiu CH, Chang CC, Lin ST, Chyau CC and Peng RY: Improved hepatoprotective effect of liposome-encapsulated astaxanthin in lipopolysaccharide-induced acute hepatotoxicity. Int J Mol Sci. 17:E11282016. View Article : Google Scholar : PubMed/NCBI | |
Wu YC, Huang HH, Wu YJ, Manousakas I, Yang CC and Kuo SM: Therapeutic and protective effects of liposomal encapsulation of astaxanthin in mice with alcoholic liver fibrosis. Int J Mol Sci. 20:E40572019. View Article : Google Scholar : PubMed/NCBI | |
Anarjan N, Tan CP, Nehdi IA and Ling TC: Colloidal astaxanthin: Preparation, characterisation and bioavailability evaluation. Food Chem. 135:1303–1309. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Kim B and Lee JY: Astaxanthin structure, metabolism, and health benefits. J Hum Nutr Food Sci. 1:10032013. | |
Kamezaki C, Nakashima A, Yamada A, Uenishi S, Ishibashi H, Shibuya N, Hama S, Hosoi S, Yamashita E and Kogure K: Synergistic antioxidative effect of astaxanthin and tocotrienol by co-encapsulated in liposomes. J Clin Biochem Nutr. 59:100–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa M, Hirai S, Yoshida T, Shibuya N, Hama S, Takahashi Y, Fukuta T, Tanaka T, Hosoi S and Kogure K: Carotenoid stereochemistry affects antioxidative activity of liposomes co-encapsulating astaxanthin and tocotrienol. Chem Pharm Bull (Tokyo). 66:714–720. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kittikaiwan P, Powthongsook S, Pavasant P and Shotipruk A: Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement. Carbohydr Polym. 70:378–385. 2007. View Article : Google Scholar | |
Wang Q, Zhao Y, Guan L, Zhang Y, Dang Q, Dong P, Li J and Liang X: Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chem. 227:9–15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Liu Z, Sun X, Zhang S, Wang S, Feng F, Wang D and Xu Y: Fabrication and characterization of β-lactoglobulin-based nanocomplexes composed of chitosan oligosaccharides as vehicles for delivery of astaxanthin. J Agric Food Chem. 66:6717–6726. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chereddy KK, Vandermeulen G and Préat V: PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen. 24:223–236. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J and Peng CA: Enhanced proliferation and differentiation of mesenchymal stem cells by astaxanthin-encapsulated polymeric micelles. PLoS One. 14:e02167552019. View Article : Google Scholar : PubMed/NCBI | |
Dias V, Junn E and Mouradian MM: The role of oxidative stress in Parkinsons disease. J Parkinsons Dis. 3:461–491. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim SH and Kim H: Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-A mini-review. Nutrients. 10:E11372018. View Article : Google Scholar : PubMed/NCBI | |
Starkov AA: The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci. 1147:37–52. 2008. View Article : Google Scholar : PubMed/NCBI | |
Siemen D and Ziemer M: What is the nature of the mitochondrial permeability transition pore and what is it not? IUBMB Life. 65:255–262. 2013. View Article : Google Scholar : PubMed/NCBI | |
Valenti MT, Garbin U, Pasini A, Zanatta M, Stranieri C, Manfro S, Zucal C and Dalle Carbonare L: Role of ox-PAPCs in the differentiation of mesenchymal stem cells (MSCs) and Runx2 and PPARγ2 expression in MSCs-like of osteoporotic patients. PLoS One. 6:e203632011. View Article : Google Scholar : PubMed/NCBI | |
Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV and Orekhov AN: Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta. Clin Dev Immunol. 2012:8324642012. View Article : Google Scholar : PubMed/NCBI | |
Kluge MA, Fetterman JL and Vita JA: Mitochondria and endothelial function. Circ Res. 112:1171–1188. 2013. View Article : Google Scholar : PubMed/NCBI | |
Apostolova N and Victor VM: Molecular strategies for targeting antioxidants to mitochondria: Therapeutic implications. Antioxid Redox Signal. 22:686–729. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wolf AM, Asoh S, Hiranuma H, Ohsawa I, Iio K, Satou A, Ishikura M and Ohta S: Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress. J Nutr Biochem. 21:381–389. 2010. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Mathison BD, Hayek MG, Zhang J, Reinhart GA and Chew BP: Astaxanthin modulates age-associated mitochondrial dysfunction in healthy dogs. J Anim Sci. 91:268–275. 2013. View Article : Google Scholar : PubMed/NCBI | |
Song X, Wang B, Lin S, Jing L, Mao C, Xu P, Lv C, Liu W and Zuo J: Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway. J Cell Mol Med. 18:2198–2212. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fan CD, Sun JY, Fu XT, Hou YJ, Li Y, Yang MF, Fu XY and Sun BL: Astaxanthin attenuates homocysteine-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Front Physiol. 8:10412017. View Article : Google Scholar : PubMed/NCBI | |
Reid MB, Shoji T, Moody MR and Entman ML: Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J Appl Physiol (1985). 73:1805–1809. 1992. View Article : Google Scholar : PubMed/NCBI | |
Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, Toyokuni S, Oka S, Yasuhara M and Yoshikawa T: Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal. 5:139–144. 2003. View Article : Google Scholar : PubMed/NCBI | |
McGarry JD and Brown NF: The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 244:1–14. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ikeuchi M, Koyama T, Takahashi J and Yazawa K: Effects of astaxanthin supplementation on exercise-induced fatigue in mice. Biol Pharm Bull. 29:2106–2110. 2006. View Article : Google Scholar : PubMed/NCBI | |
Belviranli M, Okudan N and Lamprecht M: Well-Known Antioxidants and Newcomers in Sport Nutrition: Coenzyme Q10. Quercetin, Resveratrol, Pterostilbene, Pycnogenol and Astaxanthin. Antioxidants in Sport Nutrition. CRC Press/Taylor and Francis; Boca Raton, FL: 2015 | |
Yaghooti H, Mohammadtaghvaei N and Mahboobnia K: Effects of palmitate and astaxanthin on cell viability and proinflammatory characteristics of mesenchymal stem cells. Int Immunopharmacol. 68:164–170. 2019. View Article : Google Scholar : PubMed/NCBI | |
Domazetovic V, Marcucci G, Pierucci F, Bruno G, Di Cesare Mannelli L, Ghelardini C, Brandi ML, Iantomasi T, Meacci E and Vincenzini MT: Blueberry juice protects osteocytes and bone precursor cells against oxidative stress partly through SIRT1. FEBS Open Bio. 9:1082–1096. 2019. View Article : Google Scholar : PubMed/NCBI | |
Balci Yuce H, Lektemur Alpan A, Gevrek F and Toker H: Investigation of the effect of astaxanthin on alveolar bone loss in experimental periodontitis. J Periodontal Res. 53:131–138. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hwang YH, Kim KJ, Kim SJ, Mun SK, Hong SG, Son YJ and Yee ST: Suppression effect of astaxanthin on osteoclast formation in vitro and bone loss in vivo. Int J Mol Sci. 19:E9122018. View Article : Google Scholar : PubMed/NCBI | |
El-Baz FK, Saleh DO, Abdel Jaleel GA, Hussein RA and Hassan A: Heamatococcus pluvialis ameliorates bone loss in experimentally-induced osteoporosis in rats via the regulation of OPG/RANKL pathway. Biomed Pharmacother. 116:1090172019. View Article : Google Scholar : PubMed/NCBI | |
Valenti MT, Dalle Carbonare L and Mottes M: Osteogenic Differentiation in Healthy and Pathological Conditions. Int J Mol Sci. 18:412016. View Article : Google Scholar | |
Kimble L, Mathison B and Chew BP: Astaxanthin mediates inflammatory biomarkers associated with arthritis in human chondrosarcoma cells induced with interleukin-1 beta. FASEB J. 27 (Suppl 1):6382013. | |
Chen WP, Xiong Y, Shi YX, Hu PF, Bao JP and Wu LD: Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes. Int Immunopharmacol. 19:174–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang LJ and Chen WP: Astaxanthin ameliorates cartilage damage in experimental osteoarthritis. Mod Rheumatol. 25:768–771. 2015. View Article : Google Scholar : PubMed/NCBI | |
Booth FW, Roberts CK and Laye MJ: Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2:1143–1211. 2012.PubMed/NCBI |