1
|
Kurabayashi M: Molecular mechanism of
vascular calcification. Clin Calcium. 29:157–163. 2019.(In
Japanese). PubMed/NCBI
|
2
|
Chen HY, Engert JC and Thanassoulis G:
Risk factors for valvular calcification. Curr Opin Endocrinol
Diabetes Obes. 26:96–102. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Girdauskas E and Borger MA: Bicuspid
aortic valve and associated aortopathy: An update. Semin Thorac
Cardiovasc Surg. 25:310–316. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Siu SC and Silversides CK: Bicuspid aortic
valve disease. J Am Coll Cardiol. 55:2789–2800. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cirka HA, Kural MH and Billiar KL:
Mechanoregulation of aortic valvular interstitial cell life and
death. J Long Term Eff Med Implants. 25:3–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gu X and Masters KS: Role of the MAPK/ERK
pathway in valvular interstitial cell calcification. Am J Physiol
Heart Circ Physiol. 296:H1748–H1757. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gu X and Masters KS: Role of the Rho
pathway in regulating valvular interstitial cell phenotype and
nodule formation. Am J Physiol Heart Circ Physiol. 300:H448–H458.
2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hjortnaes J, Shapero K, Goettsch C,
Hutcheson JD, Keegan J, Kluin J, Mayer JE, Bischoff J and Aikawa E:
Valvular interstitial cells suppress calcification of valvular
endothelial cells. Atherosclerosis. 242:251–260. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mohler ER, Gannon F, Reynolds C, Zimmerman
R, Keane MG and Kaplan FS: Bone formation and inflammation in
cardiac valves. Circulation. 103:1522–1528. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kaden JJ, Bickelhaupt S, Grobholz R, Vahl
CF, Hagl S, Brueckmann M, Haase KK, Dempfle CE and Borggrefe M:
Expression of bone sialoprotein and bone morphogenetic protein-2 in
calcific aortic stenosis. J Heart Valve Dis. 13:560–566.
2004.PubMed/NCBI
|
11
|
Wang Y, Wu B, Farrar E, Lui W, Lu P, Zhang
D, Alfieri CM, Mao K, Chu M, Yang D, et al: Notch-Tnf signalling is
required for development and homeostasis of arterial valves. Eur
Heart J. 38:675–686. 2017.PubMed/NCBI
|
12
|
Wu M, Chen G and Li YP: TGF-β and BMP
signaling in osteoblast, skeletal development, and bone formation,
homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Leopold JA: MicroRNAs regulate vascular
medial calcification. Cells. 3:963–980. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nigam V, Sievers HH, Jensen BC, Sier HA,
Simpson PC, Srivastava D and Mohamed SA: Altered microRNAs in
bicuspid aortic valve: A comparison between stenotic and
insufficient valves. J Heart Valve Dis. 19:459–465. 2010.PubMed/NCBI
|
15
|
Rathan S, Ankeny CJ, Arjunon S, Ferdous Z,
Kumar S, Fernandez EJ, Heath JM, Nerem RM, Yoganathan AP and Jo H:
Identification of side- and shear-dependent microRNAs regulating
porcine aortic valve pathogenesis. Sci Rep. 6:253972016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Patel V, Carrion K, Hollands A, Hinton A,
Gallegos T, Dyo J, Sasik R, Leire E, Hardiman G, Mohamed SA, et al:
The stretch responsive microRNA miR-148a-3p is a novel repressor of
IKBKB, NF-κB signaling, and inflammatory gene expression in human
aortic valve cells. FASEB J. 29:1859–1868. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Holliday CJ, Ankeny RF, Jo H and Nerem RM:
Discovery of shear- and side-specific mRNAs and miRNAs in human
aortic valvular endothelial cells. Am J Physiol Heart Circ Physiol.
301:H856–H867. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Gu J, Lu Y, Deng M, Qiu M, Tian Y, Ji Y,
Zong P, Shao Y, Zheng R, Zhou B, et al: Inhibition of acetylation
of histones 3 and 4 attenuates aortic valve calcification. Exp Mol
Med. 51:792019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Meister G, Landthaler M, Dorsett Y and
Tuschl T: Sequence-specific inhibition of microRNA- and
siRNA-induced RNA silencing. RNA. 10:544–550. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nishimasu H, Shi X, Ishiguro S, Gao L,
Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H,
et al: Engineered CRISPR-Cas9 nuclease with expanded targeting
space. Science. 361:1259–1262. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Trevino AE and Zhang F: Genome editing
using Cas9 nickases. Methods Enzymol. 546:161–174. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gomez RA, Belyea B, Medrano S, Pentz ES
and Sequeira-Lopez ML: Fate and plasticity of renin precursors in
development and disease. Pediatr Nephrol. 29:721–726. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Devan J, Janikova A and Mraz M: New
concepts in follicular lymphoma biology: From BCL2 to epigenetic
regulators and non-coding RNAs. Semin Oncol. 45:291–302. 2018.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang D, Guo J, Divieti P, Shioda T and
Bringhurst FR: CBP/p300-interacting protein CITED1 modulates
parathyroid hormone regulation of osteoblastic differentiation.
Endocrinology. 149:1728–1735. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin Z, Feng R, Li J, Meng Y, Yuan L, Fu Z,
Guo J, Bringhurst FR and Yang D: Nuclear translocation of
CBP/p300-interacting protein CITED1 induced by parathyroid hormone
requires serine phosphorylation at position 79 in its 63–84 domain.
Cell Signal. 26:2436–2445. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li SJ, Kao YH, Chung CC, Chen WY, Cheng WL
and Chen YJ: Activated p300 acetyltransferase activity modulates
aortic valvular calcification with osteogenic transdifferentiation
and downregulation of Klotho. Int J Cardiol. 232:271–279. 2017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu J, Liu L, Chao S, Liu Y, Liu X, Zheng
J, Chen J, Gong W, Teng H, Li Z, et al: The Role of
miR-330-3p/PKC-α signaling pathway in Low-dose endothelial-monocyte
activating polypeptide-ii increasing the permeability of
blood-tumor barrier. Front Cell Neurosci. 11:3582017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang H, Chen SH, Kong P, Zhang LY, Zhang
LL, Zhang NQ and Gu H: Increased expression of miR-330-3p: A novel
independent indicator of poor prognosis in human breast cancer. Eur
Rev Med Pharmacol Sci. 22:1726–1730. 2018.PubMed/NCBI
|
30
|
Meng H, Wang K, Chen X, Guan X, Hu L,
Xiong G, Li J and Bai Y: MicroRNA-330-3p functions as an oncogene
in human esophageal cancer by targeting programmed cell death 4. Am
J Cancer Res. 5:1062–1075. 2015.PubMed/NCBI
|
31
|
Min M, Peng LH, Sun G, Guo MZ, Qiu ZW and
Yang YS: Aquaporin 8 expression is reduced and regulated by
microRNAs in patients with ulcerative colitis. Chin Med J (Engl).
126:1532–1537. 2013.PubMed/NCBI
|
32
|
Feng L, Ma J, Ji H, Liu Y and Hu W:
miR-330-5p suppresses glioblastoma cell proliferation and
invasiveness through targeting ITGA5. Biosci Rep.
37:BSR201700192017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen T, Yang Z, Liu C, Wang L, Yang J,
Chen L and Li W: Circ_0078767 suppresses non-small-cell lung cancer
by protecting RASSF1A expression via sponging miR-330-3p. Cell
Prolif. 52:e125482019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Guan A, Wang H, Li X, Xie H, Wang R, Zhu Y
and Li R: MiR-330-3p inhibits gastric cancer progression through
targeting MSI1. Am J Transl Res. 8:4802–4811. 2016.PubMed/NCBI
|
35
|
Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT,
Goan YG and Lu PJ: MicroRNA-330 acts as tumor suppressor and
induces apoptosis of prostate cancer cells through E2F1-mediated
suppression of Akt phosphorylation. Oncogene. 28:3360–3370. 2009.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Pirklbauer M and Mayer G: The exchangeable
calcium pool: Physiology and pathophysiology in chronic kidney
disease. Nephrol Dial Transplant. 26:2438–2444. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Goodman WG, Goldin J, Kuizon BD, Yoon C,
Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, et al:
Coronary-artery calcification in young adults with end-stage renal
disease who are undergoing dialysis. N Engl J Med. 342:1478–1483.
2000. View Article : Google Scholar : PubMed/NCBI
|