Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer
- Authors:
- Xiao‑Jiao Li
- Rong Wen
- Dong‑Yue Wen
- Peng Lin
- Deng‑Hua Pan
- Li‑Jie Zhang
- Yu He
- Lin Shi
- Yong‑Ying Qin
- Yun‑Hui Lai
- Jing‑Ni Lai
- Jun‑Lin Yang
- Qin‑Qiao Lai
- Jun Wang
- Jun Ma
- Hong Yang
- Yu‑Yan Pang
-
Affiliations: Department of Positron Emission Tomography‑Computed Tomography (PET‑CT), First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China, Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China, Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China, Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China - Published online on: July 8, 2020 https://doi.org/10.3892/mmr.2020.11310
- Pages: 2199-2218
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Konturek A, Barczyński M, Stopa M and Nowak W: Trends in Prevalence of Thyroid Cancer Over Three Decades: A Retrospective Cohort Study of 17,526 Surgical Patients. World J Surg. 40:538–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
van der Zwan JM, Mallone S, van Dijk B, Bielska-Lasota M, Otter R, Foschi R, Baudin E and Links TP; RARECARE WG, : Carcinoma of endocrine organs: Results of the RARECARE project. Eur J Cancer. 48:1923–1931. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Goding Sauer A, Ortiz AP, Fedewa SA, Pinheiro PS, Tortolero-Luna G, Martinez-Tyson D, Jemal A and Siegel RL: Cancer Statistics for Hispanics/Latinos, 2018. CA Cancer J Clin. 68:425–445. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Guo YN, Shi L, Li XJ, Yang H, He Y, Li Q, Dang YW, Wei KL and Chen G: Development of a prognostic index based on an immunogenomic landscape analysis of papillary thyroid cancer. Aging (Albany NY). 11:480–500. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zarkesh M, Zadeh-Vakili A, Akbarzadeh M, Fanaei SA, Hedayati M and Azizi F: The role of matrix metalloproteinase-9 as a prognostic biomarker in papillary thyroid cancer. BMC Cancer. 18:11992018. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carling T and Udelsman R: Thyroid cancer. Annu Rev Med. 65:125–137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin P, He Y, Wen DY, Li XJ, Zeng JJ, Mo WJ, Li Q, Peng JB, Wu YQ, Pan DH, et al: Comprehensive analysis of the clinical significance and prospective molecular mechanisms of differentially expressed autophagy-related genes in thyroid cancer. Int J Oncol. 53:603–619. 2018.PubMed/NCBI | |
Liu C, Su C, Chen Y and Li G: miR-144-3p promotes the tumor growth and metastasis of papillary thyroid carcinoma by targeting paired box gene 8. Cancer Cell Int. 18:542018. View Article : Google Scholar : PubMed/NCBI | |
Acquaviva G, Visani M, Repaci A, Rhoden KJ, de Biase D, Pession A and Giovanni T: Molecular pathology of thyroid tumours of follicular cells: A review of genetic alterations and their clinicopathological relevance. Histopathology. 72:6–31. 2018. View Article : Google Scholar : PubMed/NCBI | |
Riesco-Eizaguirre G and Santisteban P: Molecular biology of thyroid cancer initiation. Clin Transl Oncol. 9:686–693. 2007. View Article : Google Scholar : PubMed/NCBI | |
DeLellis RA: Pathology and genetics of thyroid carcinoma. J Surg Oncol. 94:662–669. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu T, You X, Sui J, Shen B, Zhang Y, Zhang XM, Yang S, Yao YZ, Yang F, Yin LH, et al: Prognostic value of a two-microRNA signature for papillary thyroid cancer and a bioinformatic analysis of their possible functions. J Cell Biochem. Nov 2–2018.(Epub ahead of print). doi: 10.1002/jcb.27993 2018. | |
Wang X, Huang S, Li X, Jiang D, Yu H, Wu Q, Gao C and Wu Z: A potential biomarker hsa-miR-200a-5p distinguishing between benign thyroid tumors with papillary hyperplasia and papillary thyroid carcinoma. PLoS One. 13:e02002902018. View Article : Google Scholar : PubMed/NCBI | |
Vuong HG, Altibi AM, Abdelhamid AH, Ngoc PU, Quan VD, Tantawi MY, Elfil M, Vu TL, Elgebaly A, Oishi N, et al: The changing characteristics and molecular profiles of papillary thyroid carcinoma over time: A systematic review. Oncotarget. 8:10637–10649. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tricoli JV and Jacobson JW: MicroRNA: Potential for Cancer Detection, Diagnosis, and Prognosis. Cancer Res. 67:4553–4555. 2007. View Article : Google Scholar : PubMed/NCBI | |
Boufraqech M, Klubo-Gwiezdzinska J and Kebebew E: MicroRNAs in the thyroid. Best Pract Res Clin Endocrinol Metab. 30:603–619. 2016. View Article : Google Scholar : PubMed/NCBI | |
Macha MA, Seshacharyulu P, Krishn SR, Pai P, Rachagani S, Jain M and Batra SK: MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des. 20:5287–5297. 2014. View Article : Google Scholar : PubMed/NCBI | |
Parvex P: Are microRNA potential biomarkers in children with idiopathic nephrotic syndrome? EBioMedicine. 39:27–28. 2019. View Article : Google Scholar : PubMed/NCBI | |
Farazi TA, Spitzer JI, Morozov P and Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yu X, Shen J, Law PT, Chan MT and Wu WK: MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget. 6:13914–13921. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li L, Peng M, Xue W, Fan Z, Wang T, Lian J, Zhai Y, Lian W, Qin D and Zhao J: Integrated analysis of dysregulated long non-coding RNAs/microRNAs/mRNAs in metastasis of lung adenocarcinoma. J Transl Med. 16:3722018. View Article : Google Scholar : PubMed/NCBI | |
Ma Y and Sun Y: miR-29a-3p inhibits growth, proliferation, and invasion of papillary thyroid carcinoma by suppressing NF-κB signaling via direct targeting of OTUB2. Cancer Manag Res. 11:13–23. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ren F, Luo Y, Rong M, Chen G and Dang Y: Down-Regulation of miR-193a-3p Dictates Deterioration of HCC: A Clinical Real-Time qRT-PCR Study. Med Sci Monit. 21:2352–2360. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chou NH, Lo YH, Wang KC, Kang CH, Tsai CY and Tsai KW: miR-193a-5p and −3p Play a Distinct Role in Gastric Cancer: miR-193a-3p Suppresses Gastric Cancer Cell Growth by Targeting ETS1 and CCND1. Anticancer Res. 38:3309–3318. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Luo H, Li F, Yang Y, Ou G, Ye X and Li N: LINC00152 down-regulated miR-193a-3p to enhance MCL1 expression and promote gastric cancer cells proliferation. Biosci Rep. 38:BSR201716072018. View Article : Google Scholar : PubMed/NCBI | |
Deng W, Yan M, Yu T, Ge H, Lin H, Li J, Liu Y, Geng Q, Zhu M, Liu L, et al: Quantitative proteomic analysis of the metastasis-inhibitory mechanism of miR-193a-3p in non-small cell lung cancer. Cell Physiol Biochem. 35:1677–1688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Liu Z, Liu Y, Zhou X, Sun F, Liu Y, Li L, Hua S, Zhao Y, Gao H, et al: PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J. 286:1136–1153. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Takahashi M, Ohnuma S, Unno M, Yoshino Y, Ouchi K, Takahashi S, Yamada Y, Shimodaira H and Ishioka C: microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer. BMC Cancer. 17:7232017. View Article : Google Scholar : PubMed/NCBI | |
Mamoori A, Wahab R, Islam F, Lee K, Vider J, Lu CT, Gopalan V and Lam AK: Clinical and biological significance of miR-193a-3p targeted KRAS in colorectal cancer pathogenesis. Hum Pathol. 71:145–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Santarpia L, Calin GA, Adam L, Ye L, Fusco A, Giunti S, Thaller C, Paladini L, Zhang X, Jimenez C, et al: A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer. 20:809–823. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baldin V, Lukas J, Marcote MJ, Pagano M and Draetta G: Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7:812–821. 1993. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Xu P, Liu Z, Zhen Y, Chen Y, Liu Y, Fu Q, Deng X, Liang Z, Li Y, et al: Dual roles of miR-374a by modulated c-Jun respectively targets CCND1-inducing PI3K/AKT signal and PTEN-suppressing Wnt/β-catenin signaling in non-small-cell lung cancer. Cell Death Dis. 9:782018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li D, Yang W, Fu H, Liu Y and Li Y: Overexpression of the transcription factor FOXP3 in lung adenocarcinoma sustains malignant character by promoting G1/S transition gene CCND1. Tumour Biol. 37:7395–7404. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wang C, Prendergast GC and Pestell RG: Cyclin D1 functions in cell migration. Cell Cycle. 5:2440–2442. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Han Y, Yang X, Li M, Zhu R, Hu J, Zhang X, Wei R, Li K and Gao R: HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway. Oncotarget. 8:103364–103374. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Qin Z, Li X, Zhang J, Zheng Y, Xu W, Cao Q and Wang Z: Genetic polymorphisms in cyclin D1 are associated with risk of renal cell cancer in the Chinese population. Oncotarget. 8:80889–80899. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng S, Serra S, Mercado M, Ezzat S and Asa SL: A high-throughput proteomic approach provides distinct signatures for thyroid cancer behavior. Clin Cancer Res. 17:2385–2394. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deng M, Brägelmann J, Schultze JL and Perner S: Web-TCGA: An online platform for integrated analysis of molecular cancer data sets. BMC Bioinformatics. 17:722016. View Article : Google Scholar : PubMed/NCBI | |
Chandran UR, Medvedeva OP, Barmada MM, Blood PD, Chakka A, Luthra S, Ferreira A, Wong KF, Lee AV, Zhang Z, et al: TCGA Expedition: A Data Acquisition and Management System for TCGA Data. PLoS One. 11:e01653952016. View Article : Google Scholar : PubMed/NCBI | |
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets - update. Nucleic Acids Res 41D. D991–D995. 2013. | |
Lassalle S, Zangari J, Popa A, Ilie M, Hofman V, Long E, Patey M, Tissier F, Belléannée G, Trouette H, et al: MicroRNA-375/SEC23A as biomarkers of the in vitro efficacy of vandetanib. Oncotarget. 7:30461–30478. 2016. View Article : Google Scholar : PubMed/NCBI | |
Minna E, Romeo P, Dugo M, De Cecco L, Todoerti K, Pilotti S, Perrone F, Seregni E, Agnelli L, Neri A, et al: miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 7:12731–12747. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rossing M, Borup R, Henao R, Winther O, Vikesaa J, Niazi O, Godballe C, Krogdahl A, Glud M, Hjort-Sørensen C, et al: Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J Mol Endocrinol. 48:11–23. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ioannidis JP, Patsopoulos NA and Evangelou E: Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 335:914–916. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gan BL, He RQ, Zhang Y, Wei DM, Hu XH and Chen G: Downregulation of HOXA3 in lung adenocarcinoma and its relevant molecular mechanism analysed by RT-qPCR, TCGA and in silico analysis. Int J Oncol. 53:1557–1579. 2018.PubMed/NCBI | |
Deng Y, He R, Zhang R, Gan B, Zhang Y, Chen G and Hu X: The expression of HOXA13 in lung adenocarcinoma and its clinical significance: A study based on The Cancer Genome Atlas, Oncomine and reverse transcription-quantitative polymerase chain reaction. Oncol Lett. 15:8556–8572. 2018.PubMed/NCBI | |
Liang YY, Huang JC, Tang RX, Chen WJ, Chen P, Cen WL, Shi K, Gao L, Gao X, Liu AG, et al: Clinical value of miR-198-5p in lung squamous cell carcinoma assessed using microarray and RT-qPCR. World J Surg Oncol. 16:222018. View Article : Google Scholar : PubMed/NCBI | |
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI | |
Bardou P, Mariette J, Escudié F, Djemiel C and Klopp C: jvenn: An interactive Venn diagram viewer. BMC Bioinformatics. 15:2932014. View Article : Google Scholar : PubMed/NCBI | |
The Gene Ontology Consortium, . The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47(D1): D330–D338. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kanehisa M, Sato Y, Furumichi M, Morishima K and Tanabe M: New approach for understanding genome variations in KEGG. Nucleic Acids Res 47D. D590–D595. 2019. View Article : Google Scholar | |
Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, Felix V, Jeng L, Bearer C, Lichenstein R, et al: Human Disease Ontology 2018 update: Classification, content and workflow expansion. Nucleic Acids Res 47D. D955–D962. 2019. View Article : Google Scholar | |
Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wickham H: ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY: 2016 | |
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47D. D607–D613. 2019. View Article : Google Scholar | |
Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, et al: Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA. 104:2803–2808. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fontaine JF, Mirebeau-Prunier D, Franc B, Triau S, Rodien P, Houlgatte R, Malthièry Y and Savagner F: Microarray analysis refines classification of non-medullary thyroid tumours of uncertain malignancy. Oncogene. 27:2228–2236. 2008. View Article : Google Scholar : PubMed/NCBI | |
Salvatore G, Nappi TC, Salerno P, Jiang Y, Garbi C, Ugolini C, Miccoli P, Basolo F, Castellone MD, Cirafici AM, et al: A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res. 67:10148–10158. 2007. View Article : Google Scholar : PubMed/NCBI | |
Giordano TJ, Au AY, Kuick R, Thomas DG, Rhodes DR, Wilhelm KG Jr, Vinco M, Misek DE, Sanders D, Zhu Z, et al: Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res. 12:1983–1993. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M, Bogdanova T, Jarzab B, Dumont JE, Detours V and Maenhaut C: A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer. 107:994–1000. 2012. View Article : Google Scholar : PubMed/NCBI | |
Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, Unger K, Detours V, Bogdanova T, Thomas G, et al: Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging. 43:1267–1277. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barros-Filho MC, Marchi FA, Pinto CA, Rogatto SR and Kowalski LP: High Diagnostic Accuracy Based on CLDN10, HMGA2, and LAMB3 Transcripts in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 100:E890–E899. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pita JM, Figueiredo IF, Moura MM, Leite V and Cavaco BM: Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J Clin Endocrinol Metab. 99:E497–E507. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pita JM, Banito A, Cavaco BM and Leite V: Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer. 101:1782–1791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rusinek D, Swierniak M, Chmielik E, Kowal M, Kowalska M, Cyplinska R, Czarniecka A, Piglowski W, Korfanty J, Chekan M, et al: BRAFV600E-Associated Gene Expression Profile: Early Changes in the Transcriptome, Based on a Transgenic Mouse Model of Papillary Thyroid Carcinoma. PLoS One. 10:e01436882015. View Article : Google Scholar : PubMed/NCBI | |
von Roemeling CA, Marlow LA, Pinkerton AB, Crist A, Miller J, Tun HW, Smallridge RC and Copland JA: Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target. J Clin Endocrinol Metab. 100:E697–E709. 2015. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xu J, Li H, Sun C, Yu L, Li Y, Shi C, Zhou X, Bian X, Ping Y, et al: miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas. Oncotarget. 6:29129–29142. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiong DD, Li ZY, Liang L, He RQ, Ma FC, Luo DZ, Hu XH and Chen G: The LncRNA NEAT1 Accelerates Lung Adenocarcinoma Deterioration and Binds to Mir-193a-3p as a Competitive Endogenous RNA. Cell Physiol Biochem. 48:905–918. 2018. View Article : Google Scholar : PubMed/NCBI | |
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI | |
Kitahara CM and Sosa JA: The changing incidence of thyroid cancer. Nat Rev Endocrinol. 12:646–653. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vigneri R, Malandrino P and Vigneri P: The changing epidemiology of thyroid cancer: Why is incidence increasing? Curr Opin Oncol. 27:1–7. 2015. View Article : Google Scholar : PubMed/NCBI | |
Raue F and Frank-Raue K: Thyroid Cancer: Risk-Stratified Management and Individualized Therapy. Clin Cancer Res. 22:5012–5021. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiu J, Zhang W, Zang C, Liu X, Liu F, Ge R, Sun Y and Xia Q: Identification of key genes and miRNAs markers of papillary thyroid cancer. Biol Res. 51:452018. View Article : Google Scholar : PubMed/NCBI | |
Nixon AM, Provatopoulou X, Kalogera E, Zografos GN and Gounaris A: Circulating thyroid cancer biomarkers: Current limitations and future prospects. Clin Endocrinol (Oxf). 87:117–126. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Pan J, Xu D, Yang Z, Sun J, Sun L, Wu Y and Qiao H: Combination of serum microRNAs and ultrasound profile as predictive biomarkers of diagnosis and prognosis for papillary thyroid microcarcinoma. Oncol Rep. 40:3611–3624. 2018.PubMed/NCBI | |
Nikiforov YE: Role Of Molecular Markers In Thyroid Nodule Management: Then And Now. Endocr Pract. 23:979–988. 2017. View Article : Google Scholar : PubMed/NCBI | |
Grossi I, Salvi A, Abeni E, Marchina E and De Petro G: Biological Function of MicroRNA193a-3p in Health and Disease. Int J Genomics. 2017:59131952017. View Article : Google Scholar : PubMed/NCBI | |
Pekow J, Meckel K, Dougherty U, Huang Y, Chen X, Almoghrabi A, Mustafi R, Ayaloglu-Butun F, Deng Z, Haider HI, et al: miR-193a-3p is a Key Tumor Suppressor in Ulcerative Colitis-Associated Colon Cancer and Promotes Carcinogenesis through Upregulation of IL17RD. Clin Cancer Res. 23:5281–5291. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Hu X, Zhang H, Wang S, Zhang H, You C, Zhang CY, Liang H, Chen X and Ba Y: miR-193a-3p is an Important Tumour Suppressor in Lung Cancer and Directly Targets KRAS. Cell Physiol Biochem. 44:1311–1324. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ren F, Ding H, Huang S, Wang H, Wu M, Luo D, Dang Y, Yang L and Chen G: Expression and clinicopathological significance of miR-193a-3p and its potential target astrocyte elevated gene-1 in non-small lung cancer tissues. Cancer Cell Int. 15:802015. View Article : Google Scholar : PubMed/NCBI | |
Williams M, Kirschner MB, Cheng YY, Hanh J, Weiss J, Mugridge N, Wright CM, Linton A, Kao SC, Edelman JJ, et al: miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget. 6:23480–23495. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Duan B, Hu J, Yu H, Sheng H, Gao H and Huang J: Decreased expression of miR-193a-3p is associated with poor prognosis in colorectal cancer. Oncol Lett. 14:1061–1067. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xu X, Xu X, Li S, Liang Z, Hu Z, Wu J, Zhu Y, Jin X, Wang X, et al: MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1. Oncol Lett. 14:5121–5128. 2017.PubMed/NCBI | |
Liang W and Sun F: Identification of key genes of papillary thyroid cancer using integrated bioinformatics analysis. J Endocrinol Invest. 41:1237–1245. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jeon S, Kim Y, Jeong YM, Bae JS and Jung CK: CCND1 Splice Variant as A Novel Diagnostic and Predictive Biomarker for Thyroid Cancer. Cancers (Basel). 10:4372018. View Article : Google Scholar | |
Lamba Saini M, Weynand B, Rahier J, Mourad M, Hamoir M and Marbaix E: Cyclin D1 in well differentiated thyroid tumour of uncertain malignant potential. Diagn Pathol. 10:322015. View Article : Google Scholar : PubMed/NCBI | |
Tsai KW, Leung CM, Lo YH, Chen TW, Chan WC, Yu SY, Tu YT, Lam HC, Li SC, Ger LP, et al: Arm Selection Preference of MicroRNA-193a Varies in Breast Cancer. Sci Rep. 6:281762016. View Article : Google Scholar : PubMed/NCBI |