Significance of taurine transporter (TauT) in homeostasis and its layers of regulation (Review)
- Authors:
- Stella Baliou
- Anthony M. Kyriakopoulos
- Maria Goulielmaki
- Michalis I. Panayiotidis
- Demetrios A. Spandidos
- Vassilios Zoumpourlis
-
Affiliations: National Hellenic Research Foundation, 11635 Athens, Greece, Nasco AD Biotechnology Laboratory, 18536 Pireus, Greece, Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: July 9, 2020 https://doi.org/10.3892/mmr.2020.11321
- Pages: 2163-2173
-
Copyright: © Baliou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Falany CN, Johnson MR, Barnes S and Diasio RB: Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem. 269:19375–19379. 1994.PubMed/NCBI | |
Lambert IH, Jensen JV and Pedersen PA: mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblasts. Am J Physiol Cell Physiol. 306:C1028–C1040. 2014. View Article : Google Scholar : PubMed/NCBI | |
Espe M and Holen E: Taurine attenuates apoptosis in primary liver cells isolated from Atlantic salmon (Salmo salar). Br J Nutr. 110:20–28. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trenkner E: Possible role of glutamate with taurine in neuron-glia interaction during cerebellar development. Prog Clin Biol Res. 351:133–140. 1990.PubMed/NCBI | |
Schaffer SW, Azuma J and Madura JD: Mechanisms underlying taurine-mediated alterations in membrane function. Amino Acids. 8:231–246. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tappaz ML: Taurine biosynthetic enzymes and taurine transporter: Molecular identification and regulations. Neurochem Res. 29:83–96. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stipanuk MH: Role of the liver in regulation of body cysteine and taurine levels: A brief review. Neurochem Res. 29:105–110. 2004. View Article : Google Scholar : PubMed/NCBI | |
Palkovits M, Elekes I, Láng T and Patthy A: Taurine levels in discrete brain nuclei of rats. J Neurochem. 47:1333–1335. 1986. View Article : Google Scholar : PubMed/NCBI | |
Stipanuk MH, Londono M, Lee JI, Hu M and Yu AF: Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J Nutr. 132:3369–3378. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ueki I and Stipanuk MH: 3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways. J Nutr. 139:207–214. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ueki I and Stipanuk MH: Enzymes of the taurine biosynthetic pathway are expressed in rat mammary gland. J Nutr. 137:1887–1894. 2007. View Article : Google Scholar : PubMed/NCBI | |
Park E, Park SY, Wang C, Xu J, LaFauci G and Schuller-Levis G: Cloning of murine cysteine sulfinic acid decarboxylase and its mRNA expression in murine tissues. Biochim Biophys Acta. 1574:403–406. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marcinkiewicz J and Kontny E: Taurine and inflammatory diseases. Amino Acids. 46:7–20. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jerkins AA and Steele RD: Quantification of cysteine sulfinic acid decarboxylase in male and female rats: Effect of adrenalectomy and methionine. Arch Biochem Biophys. 294:534–538. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL and Stipanuk MH: Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab. 301:E668–E684. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roman HB, Hirschberger LL, Krijt J, Valli A, Kožich V and Stipanuk MH: The cysteine dioxgenase knockout mouse: Altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS(−) production and evidence of pancreatic and lung toxicity. Antioxid Redox Signal. 19:1321–1336. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sturman JA: Taurine in development. J Nutr. 118:1169–1176. 1988. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto Y, Tiruppathi C, Ganapathy V and Leibach FH: Active transport of taurine in rabbit jejunal brush-border membrane vesicles. Am J Physiol. 257:G65–G72. 1989.PubMed/NCBI | |
O'Flaherty L, Stapleton PP, Redmond HP and Bouchier-Hayes DJ: Intestinal taurine transport: A review. Eur J Clin Invest. 27:873–880. 1997. View Article : Google Scholar : PubMed/NCBI | |
Glass EN, Odle J and Baker DH: Urinary taurine excretion as a function of taurine intake in adult cats. J Nutr. 122:1135–1142. 1992. View Article : Google Scholar : PubMed/NCBI | |
Schuller-Levis G and Park E: Is taurine a biomarker. Advances in Clinical Chemistry. 41:Elsevier. 1–21. 2006. View Article : Google Scholar : PubMed/NCBI | |
Anderson CMH, Howard A, Walters JRF, Ganapathy V and Thwaites DT: Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+-coupled PAT1 (SLC36A1) and Na+- and Cl−-dependent TauT (SLC6A6): intestinal taurine transport via PAT1 (SLC36A1) and TauT (SLC6A6). J Physiol. 587:731–744. 2009. View Article : Google Scholar : PubMed/NCBI | |
Voss JW, Pedersen SF, Christensen ST and Lambert IH: Regulation of the expression and subcellular localization of the taurine transporter TauT in mouse NIH3T3 fibroblasts. Eur J Biochem. 271:4646–4658. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jensen A, Figueiredo-Larsen M, Holm R, Broberg ML, Brodin B and Nielsen CU: PAT1 (SLC36A1) shows nuclear localization and affects growth of smooth muscle cells from rats. Am J Physiol Endocrinol Metab. 306:E65–E74. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jong CJ, Ito T, Mozaffari M, Azuma J and Schaffer S: Effect of β-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content. J Biomed Sci. 17 (Suppl 1):S252010. View Article : Google Scholar : PubMed/NCBI | |
Ubuka T, Okada A and Nakamura H: Production of hypotaurine from L-cysteinesulfinate by rat liver mitochondria. Amino Acids. 35:53–58. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suzuki T, Suzuki T, Wada T, Saigo K and Watanabe K: Taurine as a constituent of mitochondrial tRNAs: New insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21:6581–6589. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ögmundsdóttir MH, Heublein S, Kazi S, Reynolds B, Visvalingam SM, Shaw MK and Goberdhan DCI: Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS One. 7:e366162012. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi K, Toyohara H and Sakaguchi M: A hyperosmotic stress-induced mRNA of carp cell encodes Na+- and Cl−-dependent high affinity taurine transporter1 the sequence reported in this paper has been deposited in the DDBJ/EMBL/GenBank database with accession no. AB006986.1. Biochim Biophys Acta Biomembr. 1464:219–230. 2000. View Article : Google Scholar | |
Mollerup J and Lambert IH: Calyculin a modulates the kinetic constants for the Na+-coupled taurine transport in Ehrlich ascites tumour cells. Biochim Biophys Acta Biomembr. 1371:335–344. 1998. View Article : Google Scholar | |
Sakai S, Tosaka T, Tasaka J, Hashiguchi T and Yoshihama I: Taurine uptake by glial cells in the bullfrog sympathetic ganglia. Neurochem Int. 14:193–198. 1989. View Article : Google Scholar : PubMed/NCBI | |
Han X, Patters AB, Jones DP, Zelikovic I and Chesney RW: The taurine transporter: Mechanisms of regulation. Acta Physiol (Oxf). 187:61–73. 2006. View Article : Google Scholar : PubMed/NCBI | |
Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, Seeliger MW, Warskulat U and Häussinger D: Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J. 16:231–233. 2002. View Article : Google Scholar : PubMed/NCBI | |
Han X, Patters AB and Chesney RW: Transcriptional repression of taurine transporter gene (TauT) by p53 in renal cells. J Biol Chem. 277:39266–39273. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lambert IH: Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem Res. 29:27–63. 2004. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki T and Matsuzaki Y: Taurine and liver diseases: A focus on the heterogeneous protective properties of taurine. Amino Acids. 46:101–110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hammarqvist F, Angsten G, Meurling S, Andersson K and Wernerman J: Age-related changes of muscle and plasma amino acids in healthy children. Amino Acids. 39:359–366. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hu Z, Chen B, Bu Q, Lu W, Deng Y, Zhu R, Shao X, Hou J, Zhao J, et al: Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett. 215:1–7. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holecek M and Sispera L: Effects of arginine supplementation on amino acid profiles in blood and tissues in fed and overnight-fasted rats. Nutrients. 8:2062016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li F, Wu L, Wei H, Liu Y, Li T, Tan B, Kong X, Yao K, Chen S, et al: Effects of dietary protein restriction on muscle fiber characteristics and mTORC1 pathway in the skeletal muscle of growing-finishing pigs. J Anim Sci Biotechnol. 7:472016. View Article : Google Scholar : PubMed/NCBI | |
Holecek M and Kovarik M: Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet - effect of starvation. Food Chem Toxicol. 49:3336–3342. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Sebastian BM, Tang H, McMullen MM, Axhemi A, Jacobsen DW and Nagy LE: Taurine supplementation prevents ethanol-induced decrease in serum adiponectin and reduces hepatic steatosis in rats. Hepatology. 49:1554–1562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mochizuki T, Satsu H, Nakano T and Shimizu M: Regulation of the human taurine transporter by TNF-α and an anti-inflammatory function of taurine in human intestinal Caco-2 cells. Biofactors. 21:141–144. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ishizuka K, Miyamoto Y, Satsu H, Sato R and Shimizu M: Characteristics of lysophosphatidylcholine in its inhibition of taurine uptake by human intestinal Caco-2 cells. Biosci Biotechnol Biochem. 66:730–736. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mochizuki T, Satsu H and Shimizu M: Signaling pathways involved in tumor necrosis factor α-induced upregulation of the taurine transporter in Caco-2 cells. FEBS Lett. 579:3069–3074. 2005. View Article : Google Scholar : PubMed/NCBI | |
Merheb M, Daher RT, Nasrallah M, Sabra R, Ziyadeh FN and Barada K: Taurine intestinal absorption and renal excretion test in diabetic patients: A pilot study. Diabetes Care. 30:2652–2654. 2007. View Article : Google Scholar : PubMed/NCBI | |
Han X, Budreau AM and Chesney RW: The taurine transporter gene and its role in renal development. Amino Acids. 19:499–507. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chesney RW, Scriver CR and Mohyuddin F: Localization of the membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinuric mice. J Clin Invest. 57:183–193. 1976. View Article : Google Scholar : PubMed/NCBI | |
Satsu H, Miyamoto Y and Shimizu M: Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. Biochim Biophys Acta. 1419:89–96. 1999. View Article : Google Scholar : PubMed/NCBI | |
Uchida S, Kwon HM, Yamauchi A, Preston AS, Marumo F and Handler JS: Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(−)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci USA. 89:8230–8234. 1992. View Article : Google Scholar : PubMed/NCBI | |
Pramod AB, Foster J, Carvelli L and Henry LK: SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Mol Aspects Med. 34:197–219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kubo Y, Akanuma SI and Hosoya KI: Impact of SLC6A transporters in physiological taurine transport at the blood-retinal barrier and in the liver. Biol Pharm Bull. 39:1903–1911. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zelikovic I and Chesney RW: Sodium-coupled amino acid transport in renal tubule. Kidney Int. 36:351–359. 1989. View Article : Google Scholar : PubMed/NCBI | |
Silbernagl S: The renal handling of amino acids and oligopeptides. Physiol Rev. 68:911–1007. 1988. View Article : Google Scholar : PubMed/NCBI | |
Zelikovic I and Chesney RW: Ionic requirements for amino acid transport. Am J Kidney Dis. 14:313–316. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann EK and Lambert IH: Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J Physiol. 338:613–625. 1983. View Article : Google Scholar : PubMed/NCBI | |
Han X, Budreau AM and Chesney RW: Identification of promoter elements involved in adaptive regulation of the taurine transporter gene: Role of cytosolic Ca2+ signaling. Adv Exp Med Biol. 483:535–544. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M and Chen Y: The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 208:19–25. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jones DP, Miller LA and Chesney RW: Polarity of taurine transport in cultured renal epithelial cell lines: LLC-PK1 and MDCK. Am J Physiol. 265:F137–F145. 1993.PubMed/NCBI | |
Jones DP, Miller LA, Dowling C and Chesney RW: Regulation of taurine transporter activity in LLC-PK1 cells: Role of protein synthesis and protein kinase C activation. J Am Soc Nephrol. 2:1021–1029. 1991.PubMed/NCBI | |
Jones DP, Miller LA and Chesney RW: Adaptive regulation of taurine transport in two continuous renal epithelial cell lines. Kidney Int. 38:219–226. 1990. View Article : Google Scholar : PubMed/NCBI | |
Jones DP, Miller LA, Budreau A and Chesney RW: Characteristics of taurine transport in cultured renal epithelial cell lines: asymmetric polarity of proximal and distal cell lines. Adv Exp Med Biol. 315:405–411. 1992. View Article : Google Scholar : PubMed/NCBI | |
Handler JS and Kwon HM: Transcriptional regulation by changes in tonicity. Kidney Int. 60:408–411. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Fujio Y, Schaffer SW and Azuma J: Involvement of transcriptional factor TonEBP in the regulation of the taurine transporter in the cardiomyocyte. Adv Exp Med Biol. 643:523–532. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Fujio Y, Hirata M, Takatani T, Matsuda T, Muraoka S, Takahashi K and Azuma J: Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. Biochem J. 382:177–182. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ortells MC, Morancho B, Drews-Elger K, Viollet B, Laderoute KR, López-Rodríguez C and Aramburu J: Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Res. 40:4368–4384. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roos S, Kanai Y, Prasad PD, Powell TL and Jansson T: Regulation of placental amino acid transporter activity by mammalian target of rapamycin. Am J Physiol Cell Physiol. 296:C142–C150. 2009. View Article : Google Scholar : PubMed/NCBI | |
Han X and Chesney RW: The role of taurine in renal disorders. Amino Acids. 43:2249–2263. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han X, Yue J and Chesney RW: Functional TauT protects against acute kidney injury. J Am Soc Nephrol. 20:1323–1332. 2009. View Article : Google Scholar : PubMed/NCBI | |
Matsell DG, Bennett T, Han X, Budreau AM and Chesney RW: Regulation of the taurine transporter gene in the S3 segment of the proximal tubule. Kidney Int. 52:748–754. 1997. View Article : Google Scholar : PubMed/NCBI | |
Shalby AB, Assaf N and Ahmed HH: Possible mechanisms for N-acetyl cysteine and taurine in ameliorating acute renal failure induced by cisplatin in rats. Toxicol Mech Methods. 21:538–546. 2011. View Article : Google Scholar : PubMed/NCBI | |
Han X: Targeting taurine transporter (TauT) for cancer immunotherapy of p53 mutation mediated cancers - molecular basis and preclinical implication. Adv Exp Med Biol. 1155:543–553. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hansen DB, Friis MB, Hoffmann EK and Lambert IH: Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts. J Membr Biol. 245:77–87. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mollerup J and Lambert IH: Phosphorylation is involved in the regulation of the taurine influx via the β-system in Ehrlich ascites tumor cells. J Membr Biol. 150:73–82. 1996. View Article : Google Scholar : PubMed/NCBI | |
Qian X, Vinnakota S, Edwards C and Sarkar HK: Molecular characterization of taurine transport in bovine aortic endothelial cells. Biochim Biophys Acta. 1509:324–334. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jacobsen JH, Clement CA, Friis MB and Lambert IH: Casein kinase 2 regulates the active uptake of the organic osmolyte taurine in NIH3T3 mouse fibroblasts. Pflugers Arch. 457:327–337. 2008. View Article : Google Scholar : PubMed/NCBI | |
Smith KE, Borden LA, Wang CH, Hartig PR, Branchek TA and Weinshank RL: Cloning and expression of a high affinity taurine transporter from rat brain. Mol Pharmacol. 42:563–569. 1992.PubMed/NCBI | |
Kang YS, Ohtsuki S, Takanaga H, Tomi M, Hosoya K and Terasaki T: Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-α, taurine and hypertonicity. J Neurochem. 83:1188–1195. 2002. View Article : Google Scholar : PubMed/NCBI | |
Frank RN: Diabetic retinopathy. N Engl J Med. 350:48–58. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lorenzi M, Healy DP, Hawkins R, Printz JM and Printz MP: Studies on the permeability of the blood-brain barrier in experimental diabetes. Diabetologia. 29:58–62. 1986. View Article : Google Scholar : PubMed/NCBI | |
Schoch HJ, Fischer S and Marti HH: Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 125:2549–2557. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yeh WL, Lu DY, Lin CJ, Liou HC and Fu WM: Inhibition of hypoxia-induced increase of blood-brain barrier permeability by YC-1 through the antagonism of HIF-1α accumulation and VEGF expression. Mol Pharmacol. 72:440–449. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nicholson BP and Schachat AP: A review of clinical trials of anti-VEGF agents for diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 248:915–930. 2010. View Article : Google Scholar : PubMed/NCBI | |
Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegand SJ, Rudge J, Yancopoulos GD and Adamis AP: Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1α and VEGF. J Clin Invest. 109:805–815. 2002. View Article : Google Scholar : PubMed/NCBI | |
Napoli Z, Seghieri G, Bianchi L, Anichini R, De Bellis A, Campesi I, Carru C, Occhioni S, Zinellu A and Franconi F: Taurine transporter gene expression in mononuclear blood cells of type 1 diabetes patients. J Diabetes Res. 2016:73131622016. View Article : Google Scholar : PubMed/NCBI | |
Bianchi L, Lari R, Anichini R, De Bellis A, Berti A, Napoli Z, Seghieri G and Franconi F: Taurine transporter gene expression in peripheral mononuclear blood cells of type 2 diabetic patients. Amino Acids. 42:2267–2274. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han X and Chesney RW: Knockdown of TauT expression impairs human embryonic kidney 293 cell development. Adv Exp Med Biol. 776:307–320. 2013. View Article : Google Scholar : PubMed/NCBI | |
Son HY, Kim H and Kwon YH: Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J Nutr Sci Vitaminol (Tokyo). 53:324–330. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hou X, Wang Z, Ding F, He Y, Wang P, Liu X, Xu F, Wang J and Yang Y: Taurine transporter regulates adipogenic differentiation of human adipose-derived stem cells through affecting Wnt/β-catenin signaling pathway. Int J Biol Sci. 15:1104–1112. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tervaert TWC, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, et al Renal Pathology Society, : Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 21:556–563. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lang PA, Warskulat U, Heller-Stilb B, Huang DY, Grenz A, Myssina S, Duszenko M, Lang F, Häussinger D, Vallon V, et al: Blunted apoptosis of erythrocytes from taurine transporter deficient mice. Cell Physiol Biochem. 13:337–346. 2003. View Article : Google Scholar : PubMed/NCBI | |
Villumsen KR, Duelund L and Lambert IH: Acute cholesterol depletion leads to net loss of the organic osmolyte taurine in Ehrlich Lettré tumor cells. Amino Acids. 39:1521–1536. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lambert IH, Nielsen JH, Andersen HJ and Ørtenblad N: Cellular model for induction of drip loss in meat. J Agric Food Chem. 49:4876–4883. 2001. View Article : Google Scholar : PubMed/NCBI | |
Poulsen KA, Andersen EC, Hansen CF, Klausen TK, Hougaard C, Lambert IH and Hoffmann EK: Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: Role of chloride channels. Am J Physiol Cell Physiol. 298:C14–C25. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lambert IH: Effect of arachidonic acid on conductive Na, K and anion transport in Ehlrich ascites tumor cells under isotonic and hypotonic conditions. Cell Physiol Biochem. 1:177–194. 1991. View Article : Google Scholar | |
Lambert IH: Effect of arachidonic acid, fatty acids, prostaglandins, and leukotrienes on volume regulation in Ehrlich ascites tumor cells. J Membr Biol. 98:207–221. 1987. View Article : Google Scholar : PubMed/NCBI | |
Lambert IH: Reactive oxygen species regulate swelling-induced taurine efflux in NIH3T3 mouse fibroblasts. J Membr Biol. 192:19–32. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, et al: Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol. 44:927–937. 2008. View Article : Google Scholar : PubMed/NCBI | |
Izumi K, Kishita C, Nakagawa K, Huxtable RJ, Shimizu T, Koja T and Fukuda T: Modification of the antiepileptic actions of phenobarbital and phenytoin by the taurine transport inhibitor, guanidinoethane sulfonate. Eur J Pharmacol. 110:219–224. 1985. View Article : Google Scholar : PubMed/NCBI | |
Schaffer SW, Shimada-Takaura K, Jong CJ, Ito T and Takahashi K: Impaired energy metabolism of the taurine deficient heart. Amino Acids. 48:549–558. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi D, Kim SJ, Kwon DY, Lee SY and Kim YC: Taurine depletion by beta-alanine inhibits induction of hepatotoxicity in mice treated acutely with carbon tetrachloride. Adv Exp Med Biol. 643:305–311. 2009. View Article : Google Scholar : PubMed/NCBI | |
Warskulat U, Flögel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW, Molojavyi A, Heller-Stilb B, Schrader J and Häussinger D: Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J. 18:577–579. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lötsch J, Hummel T, Warskulat U, Coste O, Häussinger D, Geisslinger G and Tegeder I: Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation. Neuroscience. 259:63–70. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Oishi S, Takai M, Kimura Y, Uozumi Y, Fujio Y, Schaffer SW and Azuma J: Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci. 17 (Suppl 1):S202010. View Article : Google Scholar : PubMed/NCBI | |
Kaesler S, Sobiesiak M, Kneilling M, Volz T, Kempf WE, Lang PA, Lang KS, Wieder T, Heller-Stilb B, Warskulat U, et al: Effective T-cell recall responses require the taurine transporter Taut. Eur J Immunol. 42:831–841. 2012. View Article : Google Scholar : PubMed/NCBI | |
Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Mönnighoff I, Buchczyk D, Donner M, Flögel U, Kappert G, Soboll S, et al: Chronic liver disease is triggered by taurine transporter knockout in the mouse. FASEB J. 20:574–576. 2006. View Article : Google Scholar : PubMed/NCBI | |
Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Roth C, Witt M and Häussinger D: Taurine deficiency and apoptosis: Findings from the taurine transporter knockout mouse. Arch Biochem Biophys. 462:202–209. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qvartskhava N, Jin CJ, Buschmann T, Albrecht U, Bode JG, Monhasery N, Oenarto J, Bidmon HJ, Görg B and Häussinger D: Taurine transporter (TauT) deficiency impairs ammonia detoxification in mouse liver. Proc Natl Acad Sci USA. 116:6313–6318. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Okazaki K, Nakajima D, Shibata D, Murakami S and Schaffer S: Mass spectrometry-based metabolomics to identify taurine-modified metabolites in heart. Amino Acids. 50:117–124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Franchi-Gazzola R, Gaccioli F, Bevilacqua E, Visigalli R, Dall'Asta V, Sala R, Varoqui H, Erickson JD, Gazzola GC and Bussolati O: The synthesis of SNAT2 transporters is required for the hypertonic stimulation of system a transport activity. Biochim Biophys Acta Biomembr. 1667:157–166. 2004. View Article : Google Scholar | |
Trama J, Go WY and Ho SN: The osmoprotective function of the NFAT5 transcription factor in T cell development and activation. J Immunol. 169:5477–5488. 2002. View Article : Google Scholar : PubMed/NCBI | |
Burg MB and Ferraris JD: Intracellular organic osmolytes: Function and regulation. J Biol Chem. 283:7309–7313. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schaffer SW, Jong CJ, Ito T and Azuma J: Role of taurine in the pathologies of MELAS and MERRF. Amino Acids. 46:47–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
Board PG, Moore KA and Smith JE: Purification and properties of γ-glutamylcyclotransferase from human erythrocytes. Biochem J. 173:427–431. 1978. View Article : Google Scholar : PubMed/NCBI | |
Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L and Sharpless NE: Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114:1299–1307. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Yoshikawa N, Inui T, Miyazaki N, Schaffer SW and Azuma J: Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS One. 9:e1074092014. View Article : Google Scholar : PubMed/NCBI | |
Back SH, Scheuner D, Han J, Song B, Ribick M, Wang J, Gildersleeve RD, Pennathur S and Kaufman RJ: Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in β cells. Cell Metab. 10:13–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M and Ron D: Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 6:1099–1108. 2000. View Article : Google Scholar : PubMed/NCBI | |
Araki K and Nagata K: Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol. 4:a015438. 2012. View Article : Google Scholar : PubMed/NCBI | |
Salminen A and Kaarniranta K: ER stress and hormetic regulation of the aging process. Ageing Res Rev. 9:211–217. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jong CJ, Ito T, Azuma J and Schaffer S: Taurine depletion decreases GRP78 expression and downregulates Perk-dependent activation of the unfolded protein response. Adv Exp Med Biol. 803:571–579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Yamamoto N, Nakajima S and Schaffer SW: Beta-catenin and SMAD3 are associated with skeletal muscle aging in the taurine transporter knockout mouse. Adv Exp Med Biol 975 (Pt 1). 497–502. 2017. View Article : Google Scholar | |
Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K and Suzuki T: Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci USA. 101:15070–15075. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yasukawa T, Suzuki T, Ueda T, Ohta S and Watanabe K: Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem. 275:4251–4257. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mozaffari MS, Tan BH, Lucia MA and Schaffer SW: Effect of drug-induced taurine depletion on cardiac contractility and metabolism. Biochem Pharmacol. 35:985–989. 1986. View Article : Google Scholar : PubMed/NCBI | |
Jong CJ, Azuma J and Schaffer S: Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids. 42:2223–2232. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vionnet N, Passa P and Froguel P: Prevalence of mitochondrial gene mutations in families with diabetes mellitus. Lancet. 342:1429–1430. 1993. View Article : Google Scholar : PubMed/NCBI | |
Maassen JA, 'T Hart LM, Van Essen E, Heine RJ, Nijpels G, Jahangir Tafrechi RSJ, Raap AK, Janssen GMC and Lemkes HHPJ: Mitochondrial diabetes: Molecular mechanisms and clinical presentation. Diabetes. 53 (Suppl 1):S103–S109. 2004. View Article : Google Scholar : PubMed/NCBI |