1
|
Kaser A, Zeissig S and Blumberg RS:
Inflammatory bowel disease. Annual review of immunology.
28:573–621. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maloy KJ and Powrie F: Intestinal
homeostasis and its breakdown in inflammatory bowel disease.
Nature. 474:298–306. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Opstelten JL, Plassais J, van Mil SW,
Achouri E, Pichaud M, Siersema PD, Oldenburg B and Cervino AC: Gut
microbial diversity is reduced in smokers with crohn's disease.
Inflamm Bowel Dis. 22:2070–2077. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yadav P, Ellinghaus D, Rémy G,
Freitag-Wolf S, Cesaro A, Degenhardt F, Boucher G, Delacre M,
International IBD GC, Peyrin-Biroulet L, et al: Genetic factors
interact with tobacco smoke to modify risk for inflammatory bowel
disease in humans and mice. Gastroenterology. 153:550–565. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ueno A, Jijon H, Traves S, Chan R, Ford K,
Beck PL, Iacucci M, Fort Gasia M, Barkema HW, Panaccione R, et al:
Opposing effects of smoking in ulcerative colitis and Crohn's
disease may be explained by differential effects on dendritic
cells. Inflamm Bowel Dis. 20:800–810. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Browning KN, Verheijden S and Boeckxstaens
GE: The vagus nerve in appetite regulation, mood, and intestinal
inflammation. Gastroenterology. 152:730–744. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ingram JR, Rhodes J, Evans BK and Thomas
GA: Preliminary observations of oral nicotine therapy for
inflammatory bowel disease: An open-label phase I–II study of
tolerance. Inflamm Bowel Dis. 11:1092–1096. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Galle-Treger L, Suzuki Y, Patel N,
Sankaranarayanan I, Aron JL, Maazi H, Chen L and Akbari O:
Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent
airway hyperreactivity. Nat Commun. 7:132022016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim H, Kim SR, Je J, Jeong K, Kim S, Kim
HJ, Chang KC and Park SW: The proximal tubular α7 nicotinic
acetylcholine receptor attenuates ischemic acute kidney injury
through Akt/PKC signaling-mediated HO-1 induction. Exp Mol Med.
50:402018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bonaz BL and Bernstein CN: Brain-gut
interactions in inflammatory bowel disease. Gastroenterology.
144:36–49. 2014. View Article : Google Scholar
|
11
|
Severs M, Mangen MJ, van der Valk ME,
Fidder HH, Dijkstra G, van der Have M, van Bodegraven AA, de Jong
DJ, van der Woude CJ, Romberg-Camps MJ, et al: Smoking is
associated with higher disease-related costs and lower
health-related quality of life in inflammatory bowel disease. J
Crohns Colitis. 11:342–352. 2017.PubMed/NCBI
|
12
|
Kong W, Kang K, Gao Y, Liu H, Meng X, Cao
Y, Yang S, Liu W, Zhang J, Yu K and Zhao M: GTS-21 protected
against lps-induced sepsis myocardial injury in mice through
α7nAChR. Inflammation. 41:1073–1083. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li B, Alli R, Vogel P and Geiger TL: IL-10
modulates DSS-induced colitis through a macrophage-ROS-NO axis.
Mucosal Immunol. 7:869–878. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lin Y, Yang X, Yue W, Xu X, Li B, Zou L
and He R: Chemerin aggravates DSS-induced colitis by suppressing M2
macrophage polarization. Cell Mol Immunol. 11:355–366. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yi L, Lyn YJ, Peng C, Zhu RL, Bai SS, Liu
L, Wang PX, Zhou H and Dong Y: Sinomenine inhibits fibroblast-like
synoviocyte proliferation by regulating α7nAChR expression via
ERK/Egr-1 pathway. Int Immunopharmacol. 56:65–70. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wazea SA, Wadie W, Bahgat AK and El-Abhar
HS: Galantamine anti-colitic effect: Role of alpha-7 nicotinic
acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE
and p-AKT/Bcl-2 pathways. Sci Rep. 8:51102018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu L, Zhou Y, Zhou Z, Liu Y, Bai Y, Xing X
and Wang X: Nicotine induces the production of IL-1β and IL-8 via
the α7 nAChR/NF-κB pathway in human periodontal ligament cells: An
in vitro study. Cell Physiol Biochem. 34:423–431. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Grandi A, Zini I, Flammini L, Cantoni AM,
Vivo V, Ballabeni V, Barocelli E and Bertoni S: α7 nicotinic
agonist AR-R17779 protects mice against 2,4,6-trinitrobenzene
sulfonic acid-induced colitis in a spleen-dependent way. Front
Pharmacol. 8:8092017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tasaka Y, Yasunaga D, Kiyoi T, Tanaka M,
Tanaka A, Suemaru K and Araki H: Involvement of stimulation of α7
nicotinic acetylcholine receptors in the suppressive effect of
tropisetron on dextran sulfate sodium-induced colitis in mice. J
Pharmacol Sci. 127:275–283. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Snoek SA, Verstege MI, van der Zanden EP,
Deeks N, Bulmer DC, Skynner M, Lee K, Te Velde AA, Boeckxstaens GE
and de Jonge WJ: Selective alpha7 nicotinic acetylcholine receptor
agonists worsen disease in experimental colitis. Br J Pharmacol.
160:322–333. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Anshul AP and Jerrel LY: Activation of the
α7 Nicotinic ACh Receptor Induces Anxiogenic Effects in Rats Which
Is Blocked by a 5-HT1a Receptor Antagonist.
Neuropharmacology. 70:35–42. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bixler SL, Sandler NG, Douek DC and
Mattapallil JJ: Suppressed Th17 levels correlate with elevated
PIAS3, SHP2, and SOCS3 expression in CD4 T cells during acute
simian immunodeficiency virus infection. J Virol. 87:7093–7101.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang YC, Chen CL, Sheu BS, Yang YJ, Tseng
PC, Hsieh CY and Lin CF: Helicobacter pylori infection activates
Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ
signaling. J Immunol. 193:4149–4158. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xiao P, Zhang H, Zhang Y, Zheng M, Liu R,
Zhao Y, Zhang X, Cheng H, Cao Q and Ke Y: Phosphatase Shp2
exacerbates intestinal inflammation by disrupting macrophage
responsiveness to interleukin-10. J Exp Med. 216:337–349. 2019.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Xiao J, Shao L, Shen J, Jiang W, Feng Y,
Zheng P and Liu F: Effects of ketanserin on experimental colitis in
mice and macrophage function. Int J Mol Med. 37:659–668. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Harwani SC, Ratcliff J, Sutterwala FS,
Ballas ZK, Meyerholz DK, Chapleau MW and Abboud FM: Nicotine
mediates CD161a+ renal macrophage infiltration and premature
hypertension in the spontaneously hypertensive rat. Circ Res.
119:1101–1115. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Inoue T, Abe C, Sung SS, Moscalu S,
Jankowski J, Huang L, Ye H, Rosin DL, Guyenet PG and Okusa MD:
Vagus nerve stimulation mediates protection from kidney
ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin
Invest. 126:1939–1952. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lv Z, Wang Z, Luo L, Chen Y, Han G, Wang
R, Xiao H, Li X, Hou C, Feng J, et al: Spliceosome protein Eftud2
promotes colitis-associated tumorigenesis by modulating
inflammatory response of macrophage. Mucosal Immunol. 12:1164–1173.
2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xia Y, Tian LM, Liu Y, Guo KS, Lv M, Li
QT, Hao SY, Ma CH, Chen YX, Tanaka M, et al: Low dose of
cyanidin-3-O-glucoside alleviated dextran sulfate sodium-induced
colitis, mediated by CD169+ macrophage pathway. Inflamm Bowel Dis.
25:1510–1521. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang Z, Li S, Cao Y, Tian X, Zeng R, Liao
DF and Cao D: Oxidative stress and carbonyl lesions in ulcerative
colitis and associated colorectal cancer. Oxid Med Cell Longev.
2016:98752982016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pinheiro NM, Santana FPR, Almeida RR,
Guerreiro M, Martins MA, Caperuto LC, Câmara NOS, Wensing LA, Prado
VF, Tibério IFLC, et al: Acute lung injury is reduced by the
α7nAChR agonist PNU-282987 through changes in the macrophage
profile. FASEB J. 31:320–332. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang G, Xu B, Shi F, Du M, Li Y, Yu T and
Chen L: Protective effect of methane-rich saline on acetic
acid-induced ulcerative colitis via blocking the TLR4/NF-κB/MAPK
pathway and promoting IL-10/JAK1/STAT3-mediated anti-inflammatory
response. Oxid Med Cell Longev. 2019:78503242019.PubMed/NCBI
|
34
|
Qian T, Hong J, Wang L, Wang Z, Lu Z, Li
Y, Liu R and Chu Y: Regulation of CD11b by HIF-1α and the STAT3
signaling pathway contributes to the immunosuppressive function of
B cells in inflammatory bowel disease. Mol Immunol. 111:162–171.
2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zehender A, Huang J, Gyorfi AH, Matei AE,
Trinh-Minh T, Xu X, Li YN, Chen CW, Lin J, Dees C, et al: The
tyrosine phosphatase SHP2 controls TGFbeta-induced STAT3 signaling
to regulate fibroblast activation and fibrosis. Nat Commun.
9:32592018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dardaei L, Wang HQ, Singh M, Fordjour P,
Shaw KX, Yoda S, Kerr G, Yu K, Liang J, Cao Y, et al: SHP2
inhibition restores sensitivity in ALK-rearranged non-small-cell
lung cancer resistant to ALK inhibitors. Nat Med. 4:512–517. 2018.
View Article : Google Scholar
|