1
|
Ohnishi K and Ohnishi T: The biological
effects of space radiation during long stays in space. Biol Sci
Space. 18:2627–205. 2004. View Article : Google Scholar
|
2
|
Ohnishi T and Nagaoka S: Emphasis of
biological research for space radiation. Biol Sci Space. 12:5–13.
1998.(In Japanese). View
Article : Google Scholar : PubMed/NCBI
|
3
|
Takahashi A and Ohnishi T: Space radiation
biology. Biol Sci Space. 15:40–46. 2001.(In Japanese). View Article : Google Scholar : PubMed/NCBI
|
4
|
Hellweg CE, Dilruba S, Adrian A, Feles S,
Schmitz C, Berger T, Przybyla B, Briganti L, Franz M, Segerer J, et
al: Space experiment ‘Cellular Responses to Radiation in Space
(CellRad)’: Hardware and biological system tests. Life Sci Space
Res (Amst). 7:73–89. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ikenaga M, Yoshikawa I, Kojo M, Ayaki T,
Ryo H, Ishizaki K, Kato T, Yamamoto H and Hara R: Mutations induced
in Drosophila during space flight. Biol Sci Space. 11:346–350.
1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ohnishi T, Inoue N, Matsumoto H, Omatsu T,
Ohira Y and Nagaoka S: Cellular content of p53 protein in rat skin
after exposure to the space environment. J Appl Physiol (1985).
81:183–185. 1996. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ohnishi T, Tsuji K, Ohmura T, Matsumoto H,
Wang X, Takahashi A, Nagaoka S, Takabayashi A and Takahahsi A:
Accumulation of stress protein 72 (hsp72) in muscle and spleen of
goldfish taken into space. Adv Space Res. 21:1077–1080. 1998.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Farhood B, Goradel NH, Mortezaee K,
Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H,
Motevaseli E, Shabeeb D, Musa AE and Najafi M: Melatonin as an
adjuvant in radiotherapy for radioprotection and
radiosensitization. Clin Transl Oncol. 21:268–279. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Slominski AT, Hardeland R, Zmijewski MA,
Slominski RM, Reiter RJ and Paus R: Melatonin: A cutaneous
perspective on its production, metabolism, and functions. J Invest
Dermatol. 138:490–499. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Slominski AT, Kim TK, Kleszczyński K,
Semak I, Janjetovic Z, Sweatman T, Skobowiat C, Steketee JD, Lin Z,
Postlethwaite A, et al: Characterization of serotonin and
N-acetylserotonin systems in the human epidermis and skin cells. J
Pineal Res. 68:e126262020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Slominski RM, Reiter RJ,
Schlabritz-Loutsevitch N, Ostrom RS and Slominski AT: Melatonin
membrane receptors in peripheral tissues: Distribution and
functions. Mol Cell Endocrinol. 351:152–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Slominski AT, Zmijewski MA, Semak I, Kim
TK, Janjetovic Z, Slominski RM and Zmijewski JW: Melatonin,
mitochondria, and the skin. Cell Mol Life Sci. 74:3913–3925. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Tan DX, Manchester LC, Qin L and Reiter
RJ: Melatonin: A mitochondrial targeting molecule involving
mitochondrial protection and dynamics. Int J Mol Sci. 17:21242016.
View Article : Google Scholar
|
14
|
Zerbino DR and Birney E: Velvet:
Algorithms for de novo short read assembly using de Bruijn graphs.
Genome Res. 18:821–829. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Robertson G, Schein J, Chiu R, Corbett R,
Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, et al: De
novo assembly and analysis of RNA-seq data. Nat Methods. 7:909–912.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xie Y, Wu G, Tang J, Luo R, Patterson J,
Liu S, Huang W, He G, Gu S, Li S, et al: SOAPdenovo-Trans: De novo
transcriptome assembly with short RNA-Seq reads. Bioinformatics.
30:1660–1666. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ikegame M, Hattori A, Tabata MJ, Kitamura
KI, Tabuchi Y, Furusawa Y, Maruyama Y, Yamamoto T, Sekiguchi T,
Matsuoka R, et al: Melatonin is a potential drug for the prevention
of bone loss during space flight. J Pineal Res. 67:e125942019.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yano S, Masuda D, Kasahara H, Omori K,
Higashibata A, Asashima M, Ohnishi T, Yatagai F, Kamisaka S,
Furusawa T, et al: Excellent thermal control ability of cell
biology experiment facility (CBEF) for Ground-based experiments and
experiments onboard the Kibo Japanese Experiment Module of
International Space Station. Biol Sci Space. 26:12–20. 2012.
View Article : Google Scholar
|
19
|
Bolger AM, Lohse M and Usadel B:
Trimmomatic: A flexible trimmer for Illumina sequence data.
Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smeds L and Kunstner A: ConDeTri-a content
dependent read trimmer for Illumina data. PLoS One. 6:e263142011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Haas BJ, Papanicolaou A, Yassour M,
Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber
M, et al: De novo transcript sequence reconstruction from RNA-seq
using the Trinity platform for reference generation and analysis.
Nat Protoc. 8:1494–1512. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Langmead B and Salzberg SL: Fast
gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Robinson MD and Oshlack A: A scaling
normalization method for differential expression analysis of
RNA-seq data. Genome Biol. 11:R252010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jackson SP and Bartek J: The DNA-damage
response in human biology and disease. Nature. 461:1071–1078. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Winkler GS, Araujo SJ, Fieldler U,
Vermeulen W, Coin F, Egly JM, Hoeijmakers JH, Wood RD, Timmers HT
and Weeda G: TFIIH With Inactive XPD helicase functions in
transcription initiation but is defective in DNA repair. J Biol
Chem. 275:4258–4266. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hirao A, Kong YY, Matsuoka S, Wakeham A,
Ruland J, Yoshida H, Liu D, Elledge SJ and Mak TW: DNA
damage-induced activation of p53 by the checkpoint kinase Chk2.
Science. 287:1824–1827. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shiloh Y and Ziv Y: The ATM protein
kinase: Regulating the cellular response to genotoxic stress, and
more. Nat Rev Mol Cell Biol. 14:197–210. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hartwell LH and Kastan MB: Cell cycle
control and cancer. Science. 266:1821–1828. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Amundson SA, Grace MB, McLeland CB,
Epperly MW, Yeager A, Zhan Q, Greenberger JS and Fornace AJ Jr:
Human in vivo radiation-induced biomarkers: Gene expression changes
in radiotherapy patients. Cancer Res. 64:6368–6371. 2004.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Bouwman P and Jonkers J: The effects of
deregulated DNA damage signalling on cancer chemotherapy response
and resistance. Nat Rev Cancer. 12:587–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Takahashi A and Ohnishi T: Does gammaH2AX
foci formation depend on the presence of DNA double strand breaks?
Cancer Lett. 229:171–179. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
van den Bosch M, Bree RT and Lowndes NF:
The MRN complex: Coordinating and mediating the response to broken
chromosomes. EMBO Rep. 4:844–849. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mochan TA, Venere M, DiTullio RA Jr and
Halazonetis TD: 53BP1 and NFBD1/MDC1-Nbs1 function in parallel
interacting pathways activating ataxia-telangiectasia mutated (ATM)
in response to DNA damage. Cancer Res. 63:8586–8591.
2003.PubMed/NCBI
|
35
|
Lou Z, Minter-Dykhouse K, Wu X and Chen J:
MDC1 is coupled to activated CHK2 in mammalian DNA damage response
pathways. Nature. 421:957–961. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang Y, Gao Y, Zlatanou A, Tateishi S,
Yurchenko V, Rogozin IB and Vaziri C: Diverse roles of RAD18 and
Y-family DNA polymerases in tumorigenesis. Cell Cycle. 17:833–843.
2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tanoue Y, Toyoda T, Sun J, Mustofa MK,
Tateishi C, Endo S, Motoyama N, Araki K, Wu D, Okuno Y, et al:
Differential roles of Rad18 and Chk2 in genome maintenance and skin
carcinogenesis following UV Exposure. J Invest Dermatol.
138:2550–2557. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Reiter RJ, Tan DX, Manchester LC and Qi W:
Biochemical reactivity of melatonin with reactive oxygen and
nitrogen species: A review of the evidence. Cell Biochem Biophys.
34:237–256. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cui YF, Ding YQ, Zhang Y, Xu H, Jin W, Liu
XL, Dong B, Mao JP and Mao BZ: Apoptotic characteristics of spleen
lymphocyte in mice irradiated by lethal dose and its relationship
to the expression of Bax and Bcl-XL proteins. Zhongguo Wei Zhong
Bing Ji Jiu Yi Xue. 17:109–112. 2005.(In Chinese). PubMed/NCBI
|
40
|
Mohseni M, Mihandoost E, Shirazi A,
Sepehrizadeh Z, Bazzaz JT and Ghazi-khansari M: Melatonin may play
a role in modulation of bax and bcl-2 expression levels to protect
rat peripheral blood lymphocytes from gamma irradiation-induced
apoptosis. Mutat Res. 738-739:19–27. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Garcia I, Cosio G, Lizarraga F,
Martínez-Ruiz G, Meléndez-Zajgla J, Ceballos G, Espinosa M, Pacheco
R and Maldonado V: Bcl-3 regulates UVB-induced apoptosis. Hum Cell.
26:47–55. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Karanam NK, Grabarczyk P, Hammer E, Scharf
C, Venz S, Gesell-Salazar M, Barthlen W, Przybylski GK, Schmidt CA
and Völker U: Proteome analysis reveals new mechanisms of
Bcl11b-loss driven apoptosis. J Proteome Res. 9:3799–3811. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Behl Y, Krothapalli P, Desta T, Roy S and
Graves DT: FOXO1 plays an important role in enhanced microvascular
cell apoptosis and microvascular cell loss in type 1 and type 2
diabetic rats. Diabetes. 58:917–925. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Browne G, Nesbitt H, Ming L, Stein GS,
Lian JB, McKeown SR and Worthington J: Bicalutamide-induced hypoxia
potentiates RUNX2-mediated Bcl-2 expression resulting in apoptosis
resistance. Br J Cancer. 107:1714–1721. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kato JY, Matsuoka M, Polyak K, Massagué J
and Sherr CJ: Cyclic AMP-induced G1 phase arrest mediated by an
inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell.
79:487–496. 1994. View Article : Google Scholar : PubMed/NCBI
|
46
|
Savell J, Rao S, Pledger WJ and Wharton W:
Permanent growth arrest in irradiated human fibroblasts. Radiat
Res. 155:554–563. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Juríková M, Danihel Ľ, Polák Š and Varga
II: Ki67, PCNA, and MCM proteins: Markers of proliferation in the
diagnosis of breast cancer. Acta Histochem. 118:544–552. 2016.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Baldwin J and Grantham V: Radiation
Hormesis: Historical and current perspectives. J Nucl Med Technol.
43:242–246. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Komori T: Regulation of proliferation,
differentiation and functions of osteoblasts by Runx2. Int J Mol
Sci. 20:16942019. View Article : Google Scholar
|
50
|
Sakamaki J, Daitoku H, Yoshimochi K, Miwa
M and Fukamizu A: Regulation of FOXO1-mediated transcription and
cell proliferation by PARP-1. Biochem Biophys Res Commun.
382:497–502. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Malinen M, Saramäki A, Ropponen A,
Degenhardt T, Väisänen S and Carlberg C: Distinct HDACs regulate
the transcriptional response of human cyclin-dependent kinase
inhibitor genes to Trichostatin A and 1alpha, 25-dihydroxyvitamin
D3. Nucleic Acids Res. 36:121–132. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kawane T, Komori H, Liu W, Moriishi T,
Miyazaki T, Mori M, Matsuo Y, Takada Y, Izumi S, Jiang Q, et al:
Dlx5 and mef2 regulate a novel runx2 enhancer for
osteoblast-specific expression. J Bone Miner Res. 29:1960–1969.
2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Naito J, Kaji H, Sowa H, Hendy GN,
Sugimoto T and Chihara K: Menin suppresses osteoblast
differentiation by antagonizing the AP-1 factor, JunD. J Biol Chem.
280:4785–4791. 2005. View Article : Google Scholar : PubMed/NCBI
|
54
|
Slominski AT, Zmijewski MA, Plonka PM,
Szaflarski JP and Paus R: How UV light touches the brain and
endocrine system through skin, and Why. Endocrinology.
159:1992–2007. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Skobowiat C, Brozyna AA, Janjetovic Z,
Jeayeng S, Oak ASW, Kim TK, Panich U, Reiter RJ and Slominski AT:
Melatonin and its derivatives counteract the ultraviolet B
radiation-induced damage in human and porcine skin ex vivo. J
Pineal Res. 65:e125012018. View Article : Google Scholar : PubMed/NCBI
|
56
|
Janjetovic Z, Jarrett SG, Lee EF, Duprey
C, Reiter RJ and Slominski AT: Melatonin and its metabolites
protect human melanocytes against UVB-induced damage: Involvement
of NRF2-mediated pathways. Sci Rep. 7:12742017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Kim TK, Kleszczynski K, Janjetovic Z,
Sweatman T, Lin Z, Li W, Reiter RJ, Fischer TW and Slominski AT:
Metabolism of melatonin and biological activity of intermediates of
melatoninergic pathway in human skin cells. FASEB J. 27:2742–2755.
2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Slominski AT, Semak I, Fischer TW, Kim TK,
Kleszczyński K, Hardeland R and Reiter RJ: Metabolism of melatonin
in the skin: Why is it important? Exp Dermatol. 26:563–568. 2017.
View Article : Google Scholar : PubMed/NCBI
|