1
|
Taieb A, Alomar A, Böhm M, Dell'anna ML,
De Pase A, Eleftheriadou V, Ezzedine K, Gauthier Y, Gawkrodger DJ,
Jouary T, et al Vitiligo European Task Force (VETF); European
Academy of Dermatology: Venereology (EADV); Union Europe´enne des
Me´decins Spe´cialistes (UEMS), : Guidelines for the management of
vitiligo: The European Dermatology Forum consensus. Br J Dermatol.
168:3111–19. 2013. View Article : Google Scholar
|
2
|
Manga P, Elbuluk N and Orlow SJ: Recent
advances in understanding vitiligo. F1000 Res. 5:52016. View Article : Google Scholar
|
3
|
Arya V, Bansal M, Girard L, Arya S and
Valluri A: Vitiligo at Injection Site of PEG-IFN-α 2a in Two
Patients with Chronic Hepatitis C: Case Report and Literature
Review. Case Rep Dermatol. 2:156–164. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hamadah I, Binamer Y, Sanai FM, Abdo AA
and Alajlan A: Interferon-induced vitiligo in hepatitis C patients:
A case series. Int J Dermatol. 49:829–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rozera C, Cappellini GA, D'Agostino G,
Santodonato L, Castiello L, Urbani F, Macchia I, Aricò E, Casorelli
I, Sestili P, et al: Intratumoral injection of IFN-alpha dendritic
cells after dacarbazine activates anti-tumor immunity: Results from
a phase I trial in advanced melanoma. J Transl Med. 13:1392015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang S, Liu D, Ning W and Xu A: Cytosolic
dsDNA triggers apoptosis and pro-inflammatory cytokine production
in normal human melanocytes. Exp Dermatol. 24:298–300. 2015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Harris JE, Harris TH, Weninger W, Wherry
EJ, Hunter CA and Turka LA: A mouse model of vitiligo with focused
epidermal depigmentation requires IFN-γ for autoreactive
CD8+ T-cell accumulation in the skin. J Invest Dermatol.
132:1869–1876. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rashighi M and Harris JE: Interfering with
the IFN-γ/CXCL10 pathway to develop new targeted treatments for
vitiligo. Ann Transl Med. 3:3432015.PubMed/NCBI
|
9
|
Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L
and Li M: Interferon-gamma Inhibits Melanogenesis and Induces
Apoptosis in Melanocytes: A Pivotal Role of CD8+
Cytotoxic T lymphocytes in Vitiligo. Acta Derm Venereol.
95:664–670. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee JH, Kwon HS, Jung HM, Lee H, Kim GM,
Yim HW and Bae JM: Treatment Outcomes of Topical Calcineurin
Inhibitor Therapy for Patients With Vitiligo: A Systematic Review
and Meta-analysis. JAMA Dermatol. 155:9292019. View Article : Google Scholar
|
11
|
Nahhas AF, Mohammad TF and Hamzavi IH:
Vitiligo Surgery: Shuffling Melanocytes. J Investig Dermatol Symp
Proc. 18:S34–S37. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ma J, Li S, Zhu L, Guo S, Yi X, Cui T, He
Y, Chang Y, Liu B, Li C, et al: Baicalein protects human vitiligo
melanocytes from oxidative stress through activation of
NF-E2-related factor2 (Nrf2) signaling pathway. Free Radic Biol
Med. 129:492–503. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang K, Xiong X, Pallavi G, Ling Y, Ding
F, Duan W, Sun W, Ding G, Gong Q, Zhu W, et al: The early
repigmentation pattern of vitiligo is related to the source of
melanocytes and by the choice of therapy: A retrospective cohort
study. Int J Dermatol. 57:324–331. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jia H, Song L, Cong Q, Wang J, Xu H, Chu
Y, Li Q, Zhang Y, Zou X, Zhang C, et al: The LIM protein AJUBA
promotes colorectal cancer cell survival through suppression of
JAK1/STAT1/IFIT2 network. Oncogene. 36:2655–2666. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chou DH, Vetere A, Choudhary A, Scully SS,
Schenone M, Tang A, Gomez R, Burns SM, Lundh M, Vital T, et al:
Kinase-Independent Small-Molecule Inhibition of JAK-STAT Signaling.
J Am Chem Soc. 137:7929–7934. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kaplan DH, Greenlund AC, Tanner JW, Shaw
AS and Schreiber RD: Identification of an interferon-gamma receptor
alpha chain sequence required for JAK-1 binding. J Biol Chem.
271:9–12. 1996. View Article : Google Scholar : PubMed/NCBI
|
17
|
Schroder K, Hertzog PJ, Ravasi T and Hume
DA: Interferon-gamma: An overview of signals, mechanisms and
functions. J Leukoc Biol. 75:163–189. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Strassner JP and Harris JE: Understanding
mechanisms of autoimmunity through translational research in
vitiligo. Curr Opin Immunol. 43:81–88. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Richmond JM, Bangari DS, Essien KI,
Currimbhoy SD, Groom JR, Pandya AG, Youd ME, Luster AD and Harris
JE: Keratinocyte-Derived Chemokines Orchestrate T-Cell Positioning
in the Epidermis during Vitiligo and May Serve as Biomarkers of
Disease. J Invest Dermatol. 137:350–358. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lu B, Antoine DJ, Kwan K, Lundbäck P,
Wähämaa H, Schierbeck H, Robinson M, Van Zoelen MA, Yang H, Li J,
et al: JAK/STAT1 signaling promotes HMGB1 hyperacetylation and
nuclear translocation. Proc Natl Acad Sci USA. 111:3068–3073. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ahn J, Lee J and Kim S: Interferon-gamma
inhibits the neuronal differentiation of neural progenitor cells by
inhibiting the expression of Neurogenin2 via the JAK/STAT1 pathway.
Biochem Biophys Res Commun. 466:52–59. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang S, Zheng G, Zhao L, Xu F and Qian J:
Shp-2 contributes to anti-RSV activity in human pulmonary alveolar
epithelial cells by interfering with the IFN-α-induced Jak/Stat1
pathway. J Cell Mol Med. 19:2432–2440. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li T, Dong ZR, Guo ZY, Wang CH, Tang ZY,
Qu SF, Chen ZT, Li XW and Zhi XT: Aspirin enhances IFN-α-induced
growth inhibition and apoptosis of hepatocellular carcinoma via
JAK1/STAT1 pathway. Cancer Gene Ther. 20:366–374. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cao ZH, Zheng QY, Li GQ, Hu XB, Feng SL,
Xu GL and Zhang KQ: STAT1-mediated down-regulation of Bcl-2
expression is involved in IFN-γ/TNF-α-induced apoptosis in NIT-1
cells. PLoS One. 10:e01209212015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhu L, Hao J, Cheng M, Zhang C, Huo C, Liu
Y, Du W and Zhang X: Hyperglycemia-induced Bcl-2/Bax-mediated
apoptosis of Schwann cells via mTORC1/S6K1 inhibition in diabetic
peripheral neuropathy. Exp Cell Res. 367:186–195. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Toscano ECB, Vieira ÉLM, Portela ACDC,
Reis JLJ, Caliari MV, Giannetti AV, Gonçalves AP, Siqueira JM,
Suemoto CK, Leite REP, et al: Bcl-2/Bax ratio increase does not
prevent apoptosis of glia and granular neurons in patients with
temporal lobe epilepsy. Neuropathology. 39:348–357. 2019.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang J, Xia Y, Xu Z and Deng X: Propofol
Suppressed Hypoxia/Reoxygenation-Induced Apoptosis in HBVSMC by
Regulation of the Expression of Bcl-2, Bax, Caspase3, Kir6.1, and
p-JNK. Oxid Med Cell Longev. 2016:15187382016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao L, Zhu Z, Yao C, Huang Y, Zhi E, Chen
H, Tian R, Li P, Yuan Q, Xue Y, et al: VEGFC/VEGFR3 Signaling
Regulates Mouse Spermatogonial Cell Proliferation via the
Activation of AKT/MAPK and Cyclin D1 Pathway and Mediates the
Apoptosis by affecting Caspase 3/9 and Bcl-2. Cell Cycle.
17:225–239. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rashighi M, Agarwal P, Richmond JM, Harris
TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD, et al:
CXCL10 is critical for the progression and maintenance of
depigmentation in a mouse model of vitiligo. Sci Transl Med.
6:223ra232014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Harris JE: IFN-γ in Vitiligo, Is It the
Fuel or the Fire? Acta Derm Venereol. 95:643–644. 2015.PubMed/NCBI
|