1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
R, Torre L and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:3566–424. 2018. View Article : Google Scholar
|
2
|
Yokoe H, Nomura H, Yamano Y, Fushimi K,
Sakamoto Y, Ogawara K, Shiiba M, Bukawa H, Uzawa K, Takiguchi Y and
Tanzawa H: Alteration of extracellular superoxide dismutase
expression is associated with an aggressive phenotype of oral
squamous-cell carcinoma. Exp Ther Med. 1:585–590. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bello I, Soini Y and Salo T: Prognostic
evaluation of oral tongue cancer: Means, markers and perspectives
(II). Oral Oncol. 46:636–643. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
El-Naggar AK, Chan JKC, Grandis JR, Takata
T and Slootweg PJ: WHO classification of head and neck tumours.
World Health Orgn Lyon: IARC Press; pp. 1602017
|
5
|
Jiang LH, Yang W, Zou J and Beech DJ:
TRPM2 channel properties, functions and therapeutic potentials.
Expert Opin Ther Targets. 14:973–988. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ru X and Yao X: TRPM2: A multifunctional
ion channel for oxidative stress sensing. Sheng Li Xue Bao.
66:7–15. 2014.PubMed/NCBI
|
7
|
Miller B: TRPM2 in cancer. Cell Calcium.
80:8–17. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang W, Chu X, Tong Q, Cheung JY, Conrad
K, Masker K and Miller BA: A novel TRPM2 isoform inhibits calcium
influx and susceptibility to cell death. J Biol Chem.
278:16222–16229. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen SJ, Hoffman NE, Shanmughapriya S, Bao
L, Keefer K, Conrad K, Merali S, Takahashi Y, Abraham T,
Hirschler-Laszkiewicz I, et al: A splice variant of the human ion
channel TRPM2 modulates neuroblastoma tumor growth through
hypoxia-inducible factor (HIF)-1/2α. J Biol Chem. 289:36284–36302.
2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bao L, Chen SJ, Conrad K, Keefer K,
Abraham T, Lee JP, Wang J, Zhang XQ, Hirschler-Laszkiewicz I, Wang
HG, et al: Depletion of the human ion channel TRPM2 in
neuroblastoma demonstrates its key role in cell survival through
modulation of mitochondrial reactive oxygen species and
bioenergetics. J Biol Chem. 291:24449–24464. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hirschler-Laszkiewicz I, Chen SJ, Bao L,
Wang J, Zhang XQ, Shanmughapriya S, Keefer K, Madesh M, Cheung JY
and Miller BA: The human ion channel TRPM2 modulates neuroblastoma
cell survival and mitochondrial function through Pyk2, CREB, and
MCU activation. Am J Physiol Cell Physiol. 315:C571–C586. 2018.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Bao L, Festa F, Freet CS, Lee JP,
Hirschler-Laszkiewicz IM, Chen SJ, Keefer KA, Wang HG, Patterson
AD, Cheung JY and Miller BA: The human transient receptor potential
melastatin 2 ion channel modulates ROS through Nrf2. Sci Rep.
9:141322019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ishii M, Oyama A, Hagiwara T, Miyazaki A,
Mori Y, Kiuchi Y and Shimizu S: Facilitation of H2O2-induced A172
human glioblastoma cell death by insertion of oxidative
stress-sensitive TRPM2 channels. Anticancer Res. 27:3987–3992.
2007.PubMed/NCBI
|
14
|
Ertilav K, Nazıroğlu M, Ataizi ZS and
Braidy N: Selenium enhances the apoptotic efficacy of docetaxel
through activation of TRPM2 channel in DBTRG glioblastoma cells.
Neurotox Res. 35:797–808. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ma LY, Xie XW, Ma L, Pang JL, Xiong XM,
Zheng HD, Shen XL, Wen ZG and Wang HY: Downregulated long
non-coding RNA TRPM2-AS inhibits cisplatin resistance of non-small
cell lung cancer cells via activation of p53-p66shc pathway. Eur
Rev Med Pharmacol Sci. 21:2626–2634. 2017.PubMed/NCBI
|
16
|
Huang C, Qin Y, Liu H, Liang N, Chen Y, Ma
D, Han Z, Xu X, Zhou X, He J and Li S: Downregulation of a novel
long noncoding RNA TRPM2-AS promotes apoptosis in non-small cell
lung cancer. Tumour Biol. 39:10104283176911912017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Masumoto K, Tsukimoto M and Kojima S: Role
of TRPM2 and TRPV1 cation channels in cellular responses to
radiation-induced DNA damage. Biochim Biophys Acta. 1830:3382–3390.
2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Almasi S, Long CY, Sterea A, Clements DR,
Gujar S and Hiani YE: TRPM2 silencing causes G2/M arrest and
apoptosis in lung cancer cells via increasing intracellular ROS and
RNS levels and activating the JNK pathway. Cell Physiol Biochem.
52:742–757. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Orfanelli U, Wenke AK, Doglioni C, Russo
V, Bosserhoff AK and Lavorgna G: Identification of novel sense and
antisense transcription at the TRPM2 locus in cancer. Cell Res.
18:1128–1140. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guo H, Carlson JA and Slominski A: Role of
TRPM in melanocytes and melanoma. Exp Dermatol. 21:650–654. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Homma Y, Nomiya A, Tagaya M, Oyama T,
Takagaki K, Nishimatsu H and Igawa Y: Increased mRNA expression of
genes involved in pronociceptive inflammatory reactions in bladder
tissue of interstitial cystitis. J Urol. 190:1925–1931. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ceylan GG, Önalan EE, Kuloğlu T, Aydoğ G,
Keleş İ, Tonyali Ş and Ceylan C: Potential role of
melastatin-related transient receptor potential cation channel
subfamily M gene expression in the pathogenesis of urinary bladder
cancer. Oncol Lett. 12:5235–5239. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cao QF, Qian SB, Wang N, Zhang L, Wang WM
and Shen HB: TRPM2 mediates histone deacetylase inhibition-induced
apoptosis in bladder cancer cells. Cancer Biother Radiopharm.
30:87–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Orfanelli U, Jachetti E, Chiacchiera F,
Grioni M, Brambilla P, Briganti A, Freschi M, Martinelli-Boneschi
F, Doglioni C, Montorsi F, et al: Antisense transcription at the
TRPM2 locus as a novel prognostic marker and therapeutic target in
prostate cancer. Oncogene. 34:2094–2102. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mouraviev V, Lee B, Patel V, Albala D,
Johansen TE, Partin A, Ross A and Perera RJ: Clinical prospects of
long noncoding RNAs as novel biomarkers and therapeutic targets in
prostate cancer. Prostate Cancer Prostatic Dis. 19:14–20. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lavorgna G, Chiacchiera F, Briganti A,
Montorsi F, Pasini D and Salonia A: Expression-profiling of
apoptosis induced by ablation of the long ncRNA TRPM2-AS in
prostate cancer cell. Genom Data. 3:4–5. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zeng X, Sikka SC, Huang L, Sun C, Xu C,
Jia D, Abdel-Mageed AB, Pottle JE, Taylor JT and Li M: Novel role
for the transient receptor potential channel TRPM2 in prostate
cancer cell proliferation. Prostate Cancer Prostatic Dis.
13:195–201. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Koh DW, Powell DP, Blake SD, Hoffman JL,
Hopkins MM and Feng X: Enhanced cytotoxicity in triple-negative and
estrogen receptor-positive breast adenocarcinoma cells due to
inhibition of the transient receptor potential melastatin-2
channel. Oncol Rep. 34:1589–1598. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sumoza-Toledo A, Espinoza-Gabriel MI and
Montiel-Condado D: Evaluation of the TRPM2 channel as a biomarker
in breast cancer using public databases analysis. Bol Med Hosp
Infant Mex. 73:397–404. 2016.PubMed/NCBI
|
30
|
Hopkins MM, Feng X, Liu M, Parker LP and
Koh DW: Inhibition of the transient receptor potential melastatin-2
channel causes increased DNA damage and decreased proliferation in
breast adenocarcinoma cells. Int J Oncol. 46:2267–2276. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Guler Y and Ovey IS: Synergic and
comparative effect of 5-fluorouracil and leucoverin on breast and
colon cancer cells through TRPM2 channels. Bratisl Lek Listy.
119:692–700. 2018.PubMed/NCBI
|
32
|
Huang B, Chang C, Wang BL and Li H:
ELK1-induced upregulation of lncRNA TRPM2-AS promotes tumor
progression in gastric cancer by regulating miR-195/HMGA1 axis. J
Cell Biochem. 120:16921–16933. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sterea AM, Egom EE and El Hiani Y: TRP
channels in gastric cancer: New hopes and clinical perspectives.
Cell Calcium. 82:1020532019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Almasi S, Sterea AM, Fernando W, Clements
DR, Marcato P, Hoskin DW, Gujar S and El Hiani Y: TRPM2 ion channel
promotes gastric cancer migration, invasion and tumor growth
through the AKT signaling pathway. Sci Rep. 9:41822019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Almasi S, Kennedy BE, El-Aghil M, Sterea
AM, Gujar S, Partida-Sánchez S and El Hiani Y: TRPM2
channel-mediated regulation of autophagy maintains mitochondrial
function and promotes gastric cancer cell survival via the
JNK-signaling pathway. J Biol Chem. 293:3637–3650. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bauer I, Grozio A, Lasigliè D, Basile G,
Sturla L, Magnone M, Sociali G, Soncini D, Caffa I, Poggi A, et al:
The NAD+-dependent histone deacetylase SIRT6 promotes cytokine
production and migration in pancreatic cancer cells by regulating
Ca2+ responses. J Biol Chem. 287:40924–40937. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lin R, Wang Y, Chen Q, Liu Z, Xiao S, Wang
B and Shi B: TRPM2 promotes the proliferation and invasion of
pancreatic ductal adenocarcinoma. Mol Med Rep. 17:7537–7544.
2018.PubMed/NCBI
|
38
|
Yalçın E, Pala Ş, Atılgan R, Kuloğlu T,
Önalan E, Artaş G and Buran İ: Is there any difference between
endometrial hyperplasia and endometrial carcinoma in terms of
expression of TRPM2 and TRPM7 ion channels? Turk J Med Sci.
49:653–660. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Klumpp D, Misovic M, Szteyn K, Shumilina
E, Rudner J and Huber SM: Targeting TRPM2 channels impairs
radiation-induced cell cycle arrest and fosters cell death of T
cell leukemia cells in a Bcl-2-dependent manner. Oxid Med Cell
Longev. 2016:80267022016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhao LY, Xu WL, Xu ZQ, Qi C, Li Y, Cheng
J, Liu LK, Wu YN, Gao J and Ye JH: The overexpressed functional
transient receptor potential channel TRPM2 in oral squamous cell
carcinoma. Sci Rep. 6:384712016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Duan T, Sun W, Zhang M, Ge J, He Y, Zhang
J, Zheng Y, Yang W, Shen HM, Yang J, et al: Dietary restriction
protects against diethylnitrosamine-induced hepatocellular
tumorigenesis by restoring the disturbed gene expression profile.
Sci Rep. 7:437452017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Simon F, Varela D and Cabello-Verrugio C:
Oxidative stress-modulated TRPM ion channels in cell dysfunction
and pathological conditions in humans. Cell Signal. 25:1614–1624.
2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Miller BA and Cheung JY: TRPM2 protects
against tissue damage following oxidative stress and
ischaemia-reperfusion. J Physiol. 594:4181–4191. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang C, Tan YX, Yang GZ, Zhang J, Pan YF,
Liu C, Fu J, Chen Y, Ding ZW, Dong LW and Wang HY: Gankyrin has an
antioxidative role through the feedback regulation of Nrf2 in
hepatocellular carcinoma. J Exp Med. 213:859–875. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Blokhina O, Virolainen E and Fagerstedt
KV: Antioxidants, oxidative damage and oxygen deprivation stress: A
review. Ann Bot. 91:179–194. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Vinothini G and Nagini S: Correlation of
xenobiotic-metabolizing enzymes, oxidative stress and NFkappaB
signaling with histological grade and menopausal status in patients
with adenocarcinoma of the breast. Clin Chim Acta. 411:368–374.
2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chen CY, Liu TZ, Liu YW, Tseng WC, Liu RH,
Lu FJ, Lin YS, Kuo SH and Chen CH: 6-shogaol (alkanone from ginger)
induces apoptotic cell death of human hepatoma p53 mutant Mahlavu
subline via an oxidative stress-mediated caspase-dependent
mechanism. J Agric Food Chem. 55:948–954. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang K, Jiao K, Xing Z, Zhang L, Yang J,
Xie X and Yang L: Bcl-xL overexpression and its association with
the progress of tongue carcinoma. Int J Clin Exp Pathol.
7:7360–7377. 2014.PubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBI
|