1
|
Cassese S, Byrne RA, Tada T, Pinieck S,
Joner M, Ibrahim T, King LA, Fusaro M, Laugwitz KL and Kastrati A:
Incidence and predictors of restenosis after coronary stenting in
10 004 patients with surveillance angiography. Heart. 100:3201–159.
2014. View Article : Google Scholar
|
2
|
Alfonso F, Byrne RA, Rivero F and Kastrati
A: Current treatment of in-stent restenosis. J Am Coll Cardiol.
63:2659–2673. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jukema JW, Ahmed TA, Verschuren JJ and
Quax PH: Restenosis after PCI. Part 2: Prevention and therapy. Nat
Rev Cardiol. 9:79–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Byrne RA, Joner M and Kastrati A: Stent
thrombosis and restenosis: What have we learned and where are we
going? The Andreas Gruntzig Lecture ESC 2014. Eur Heart J.
36:3320–3331. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Finn AV, Joner M, Nakazawa G, Kolodgie F,
Newell J, John MC, Gold HK and Virmani R: Pathological correlates
of late drug-eluting stent thrombosis: Strut coverage as a marker
of endothelialization. Circulation. 115:2435–2441. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li X, Chen C, Wei L, Li Q, Niu X, Xu Y,
Wang Y and Zhao J: Exosomes derived from endothelial progenitor
cells attenuate vascular repair and accelerate reendothelialization
by enhancing endothelial function. Cytotherapy. 18:253–262. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kipshidze N, Ferguson JJ III, Keelan MH
Jr, Sahota H, Komorowski R, Shankar LR, Chawla PS, Haudenschild CC,
Nikolaychik V and Moses JW: Endoluminal reconstruction of the
arterial wall with endothelial cell/glue matrix reduces restenosis
in an atherosclerotic rabbit. J Am Coll Cardiol. 36:1396–1403.
2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Padfield GJ, Newby DE and Mills NL:
Understanding the role of endothelial progenitor cells in
percutaneous coronary intervention. J Am Coll Cardiol.
55:1553–1565. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Simard T, Jung RG, Motazedian P, Di Santo
P, Ramirez FD, Russo JJ, Labinaz A, Yousef A, Anantharam B,
Pourdjabbar A and Hibbert B: Progenitor cells for arterial repair:
Incremental advancements towards therapeutic reality. Stem Cells
Int. 2017:82704982017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Arcangeli A, Lastraioli E, Piccini B,
D'Amico M, Lenzi L, Pillozzi S, Calabrese M, Toni S and Arcangeli
A: Circulating endothelial progenitor cells in type 1 diabetic
patients: Relation with Patients' age and disease duration. Front
Endocrinol. 8:2782017. View Article : Google Scholar
|
11
|
Georgescu A, Alexandru N, Constantinescu
A, Titorencu I and Popov D: The promise of EPC-based therapies on
vascular dysfunction in diabetes. Eur J Oharmacol. 669:1–6. 2011.
View Article : Google Scholar
|
12
|
Gallagher KA, Liu ZJ, Xiao M, Chen H,
Goldstein LJ, Buerk DG, Nedeau A, Thom SR and Velazquez OC:
Diabetic impairments in NO-mediated endothelial progenitor cell
mobilization and homing are reversed by hyperoxia and SDF-1 alpha.
J Clin Invest. 117:1249–1259. 2007. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Pantin J, Purev E, Tian X, Cook L,
Donohue-Jerussi T, Cho E, Reger R, Hsieh M, Khuu H, Calandra G, et
al: Effect of high-dose plerixafor on CD34(+) cell mobilization in
healthy stem cell donors: Results of a randomized crossover trial.
Haematologica. 102:600–609. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schroeder MA, Rettig MP, Lopez S, Christ
S, Fiala M, Eades W, Mir FA, Shao J, McFarland K, Trinkaus K, et
al: Mobilization of allogeneic peripheral blood stem cell donors
with intravenous plerixafor mobilizes a unique graft. Blood.
129:2680–2692. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Petit I, Jin D and Rafii S: The
SDF-1-CXCR4 signaling pathway: A molecular hub modulating
neo-angiogenesis. Trends Immunol. 28:299–307. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yin Y, Zhao X, Fang Y, Yu S, Zhao J, Song
M and Huang L: SDF-1alpha involved in mobilization and recruitment
of endothelial progenitor cells after arterial injury in mice.
Cardiovasc Pathol. 19:218–227. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Anderson EM, Kwee BJ, Lewin SA, Raimondo
T, Mehta M and Mooney DJ: Local delivery of VEGF and SDF enhances
endothelial progenitor cell recruitment and resultant recovery from
ischemia. Tissue Eng Part A. 21:1217–1227. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li Y, Chang S, Li W, Tang G, Ma Y, Liu Y,
Yuan F, Zhang Z, Yang GY and Wang Y: cxcl12-engineered endothelial
progenitor cells enhance neurogenesis and angiogenesis after
ischemic brain injury in mice. Stem Cell Res Ther. 9:1392018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hoggatt J, Singh P, Tate TA, Chou BK,
Datari SR, Fukuda S, Liu L, Kharchenko PV, Schajnovitz A, Baryawno
N, et al: Rapid mobilization reveals a highly engraftable
hematopoietic stem cell. Cell. 172:191–204.e10. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tan Y, Li Y, Xiao J, Shao H, Ding C,
Arteel GE, Webster KA, Yan J, Yu H and Cai L: A novel CXCR4
antagonist derived from human SDF-1beta enhances angiogenesis in
ischaemic mice. Cardiovasc Res. 82:513–521. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vågesjö E, Öhnstedt E, Mortier A, Lofton
H, Huss F, Proost P, Roos S and Phillipson M: Accelerated wound
healing in mice by on-site production and delivery of CXCL12 by
transformed lactic acid bacteria. Proc Natl Acad Sci USA.
115:1895–1900. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nishimura Y, Ii M, Qin G, Hamada H, Asai
J, Takenaka H, Sekiguchi H, Renault MA, Jujo K, Katoh N, et al:
CXCR4 antagonist AMD3100 accelerates impaired wound healing in
diabetic mice. J Invest Dermatol. 132:711–720. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zamproni LN, Mundim MV, Porcionatto MA and
des Rieux A: Injection of SDF-1 loaded nanoparticles following
traumatic brain injury stimulates neural stem cell recruitment. Int
J Pharm. 519:323–331. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fu WL, Xiang Z, Huang FG, Cen SQ, Zhong G,
Duan X, Liu M and Leung F: Combination of granulocyte
colony-stimulating factor and CXCR4 antagonist AMD3100 for
effective harvest of endothelial progenitor cells from peripheral
blood and in vitro formation of primitive endothelial networks.
Cell Tissue Banking. 17:161–169. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shepherd RM, Capoccia BJ, Devine SM,
Dipersio J, Trinkaus KM, Ingram D and Link DC: Angiogenic cells can
be rapidly mobilized and efficiently harvested from the blood
following treatment with AMD3100. Blood. 108:3662–3667. 2006.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Stewart DA, Smith C, MacFarland R and
Calandra G: Pharmacokinetics and pharmacodynamics of plerixafor in
patients with non-Hodgkin lymphoma and multiple myeloma. Biol Blood
Marrow Transplant. 15:39–46. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Noels H, Zhou B, Tilstam PV, Theelen W, Li
X, Pawig L, Schmitz C, Akhtar S, Simsekyilmaz S, Shagdarsuren E, et
al: Deficiency of endothelial CXCR4 reduces reendothelialization
and enhances neointimal hyperplasia after vascular injury in
atherosclerosis-prone mice. Arterioscler Thromb Vasc Biol.
34:1209–1220. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yamaguchi J, Kusano KF, Masuo O, Kawamoto
A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner
JM and Asahara T: Stromal cell-derived factor-1 effects on ex vivo
expanded endothelial progenitor cell recruitment for ischemic
neovascularization. Circulation. 107:1322–1328. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dai X, Tan Y, Cai S, Xiong X, Wang L, Ye
Q, Yan X, Ma K and Cai L: The role of CXCR7 on the adhesion,
proliferation and angiogenesis of endothelial progenitor cells. J
Cell Mol Med. 15:1299–1309. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dai X, Yan X, Zeng J, Chen J, Wang Y, Chen
J, Li Y, Barati MT, Wintergerst KA, Pan K, et al: Elevating CXCR7
improves angiogenic function of EPCs via Akt/GSK-3beta/Fyn-mediated
Nrf2 activation in diabetic limb ischemia. Circ Res. 120:e7–e23.
2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yin Y, Huang L, Zhao X, Fang Y, Yu S, Zhao
J and Cui B: AMD3100 mobilizes endothelial progenitor cells in
mice, but inhibits its biological functions by blocking an
autocrine/paracrine regulatory loop of stromal cell derived
factor-1 in vitro. J Cardiovasc Pharmacol. 50:61–67. 2007.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Tarnowski M, Liu R, Wysoczynski M,
Ratajczak J, Kucia M and Ratajczak MZ: CXCR7: A new SDF-1-binding
receptor in contrast to normal CD34(+) progenitors is functional
and is expressed at higher level in human malignant hematopoietic
cells. Eur J Haematol. 85:472–483. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kalatskaya I, Berchiche YA, Gravel S,
Limberg BJ, Rosenbaum JS and Heveker N: AMD3100 is a CXCR7 ligand
with allosteric agonist properties. Mol Pharmacol. 75:1240–1247.
2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Narasipura SD, Wojciechowski JC, Charles
N, Liesveld JL and King MR: P-Selectin coated microtube for
enrichment of CD34+ hematopoietic stem and progenitor cells from
human bone marrow. Clin Chem. 54:77–85. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun J, Li Y, Graziani GM, Filion L and
Allan DS: E-selectin mediated adhesion and migration of endothelial
colony forming cells is enhanced by SDF-1alpha/CXCR4. PLoS One.
8:e608902013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vanderslice P, Biediger RJ, Woodside DG,
Brown WS, Khounlo S, Warier ND, Gundlach CW IV, Caivano AR,
Bornmann WG, Maxwell DS, et al: Small molecule agonist of very late
antigen-4 (VLA-4) integrin induces progenitor cell adhesion. J Biol
Chem. 288:19414–19428. 2013. View Article : Google Scholar : PubMed/NCBI
|