Open Access

Mesenchymal stem cell‑derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR‑210‑3p expression

  • Authors:
    • Fang Li
    • Jie Zhang
    • Rui Liao
    • Yongchun Duan
    • Lili Tao
    • Yuwei Xu
    • Anbao Chen
  • View Affiliations

  • Published online on: August 21, 2020     https://doi.org/10.3892/mmr.2020.11454
  • Pages: 3813-3821
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Neural stem cells (NSCs) have the potential to give rise to offspring cells and hypoxic injury can impair the function of NSCs. The present study investigated the effects of mesenchymal stem cell (MSC)‑derived extracellular vesicles (EVs) on NSC injury, as well as the underlying mechanisms. MSC‑EVs were isolated and identified via morphological and particle size analysis. Cobalt chloride was used to establish a hypoxic injury model in NSCs. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was conducted to detect apoptosis. Reverse transcription‑quantitative PCR was performed to detect the expression levels of miR‑210‑3p, and western blotting was used to detect the expression levels of apoptosis‑inducing factor (AIF) and Bcl‑2 19 kDa interacting protein (BNIP3). Compared with the control group, NSC apoptosis, and the expression of miR‑210‑3p, AIF and BNIP3 were significantly higher in the cobalt chloride‑induced hypoxia group. By contrast, treatment with MSC‑EVs further increased miR‑210‑3p expression levels, but reduced NSC apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). In addition, miR‑210‑3p inhibitor reduced miR‑210‑3p expression, but promoted hypoxia‑induced apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). Collectively, the results suggested that MSC‑EVs prevented NSC hypoxia injury by promoting miR‑210‑3p expression, which might reduce AIF and BNIP3 expression levels and NSC apoptosis.
View Figures
View References

Related Articles

Journal Cover

November-2020
Volume 22 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li F, Zhang J, Liao R, Duan Y, Tao L, Xu Y and Chen A: Mesenchymal stem cell‑derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR‑210‑3p expression. Mol Med Rep 22: 3813-3821, 2020.
APA
Li, F., Zhang, J., Liao, R., Duan, Y., Tao, L., Xu, Y., & Chen, A. (2020). Mesenchymal stem cell‑derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR‑210‑3p expression. Molecular Medicine Reports, 22, 3813-3821. https://doi.org/10.3892/mmr.2020.11454
MLA
Li, F., Zhang, J., Liao, R., Duan, Y., Tao, L., Xu, Y., Chen, A."Mesenchymal stem cell‑derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR‑210‑3p expression". Molecular Medicine Reports 22.5 (2020): 3813-3821.
Chicago
Li, F., Zhang, J., Liao, R., Duan, Y., Tao, L., Xu, Y., Chen, A."Mesenchymal stem cell‑derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR‑210‑3p expression". Molecular Medicine Reports 22, no. 5 (2020): 3813-3821. https://doi.org/10.3892/mmr.2020.11454