Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review)
- Authors:
- Xiangrong Cui
- Xueqing Wu
- Qiang Li
- Xuan Jing
-
Affiliations: Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China, Clinical Laboratory, Shanxi Province People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China - Published online on: August 24, 2020 https://doi.org/10.3892/mmr.2020.11456
- Pages: 3587-3596
-
Copyright: © Cui et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Radpour R, Gourabi H, Dizaj AV, Holzgreve W and Zhong XY: Genetic investigations of CFTR mutations in congenital absence of vas deferens, uterus, and vagina as a cause of infertility. J Androl. 29:506–513. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gajbhiye R, Kadam K, Khole A, Gaikwad A, Kadam S, Shah R, Kumaraswamy R and Khole V: Cystic fibrosis transmembrane conductance regulator (CFTR) gene abnormalities in Indian males with congenital bilateral absence of vas deferens & renal anomalies. Indian J Med Res. 143:616–623. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li CY, Jiang LY, Chen WY, Li K, Sheng HQ, Ni Y, Lu JX, Xu WX, Zhang SY and Shi QX: CFTR is essential for sperm fertilizing capacity and is correlated with sperm quality in humans. Hum Reprod. 25:317–327. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ferlin A and Stuppia L: Diagnostics of CFTR-negative patients with congenital bilateral absence of vas deferens: Which mutations are of most interest? Expert Rev Mol Diagn. 20:265–267. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gallego A, Rogel R, Perez-Ardavin J, Lorenzo L, Lujan S, Oltra S, Molina I and Broseta E: Congenital bilateral absence of the vas deferens (CBAVD): Do genetic disorders modify assisted reproductive technologies outcomes? Arch Esp Urol. 72:1038–1042. 2019.(In Spanish). PubMed/NCBI | |
Diao R, Fok KL, Zhao L, Chen H, Tang H, Chen J, Zheng A, Zhang X, Gui Y, Chan HC and Cai Z: Decreased expression of cystic fibrosis transmembrane conductance regulator impairs sperm quality in aged men. Reproduction. 146:637–645. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mak V, Zielenski J, Tsui LC, Durie P, Zini A, Martin S, Longley TB and Jarvi KA: Proportion of cystic fibrosis gene mutations not detected by routine testing in men with obstructive azoospermia. JAMA. 281:2217–2224. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Chen Z, Ni Y and Li Z: CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): A systemic review and meta-analysis. Hum Reprod. 27:25–35. 2012. View Article : Google Scholar : PubMed/NCBI | |
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al: Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science. 245:1066–1073. 1989. View Article : Google Scholar : PubMed/NCBI | |
Tsui LC and Dorfman R: The cystic fibrosis gene: A molecular genetic perspective. Cold Spring Harb Perspect Med. 3:a0094722013. View Article : Google Scholar : PubMed/NCBI | |
Guillot L, Beucher J, Tabary O, Le Rouzic P, Clement A and Corvol H: Lung disease modifier genes in cystic fibrosis. Int J Biochem Cell Biol. 52:83–93. 2014. View Article : Google Scholar : PubMed/NCBI | |
Linsdell P: Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance. World J Biol Chem. 5:26–39. 2014. View Article : Google Scholar : PubMed/NCBI | |
Poroca DR, Amer N, Li A, Hanrahan JW and Chappe VM: Changes in the R-region interactions depend on phosphorylation and contribute to PKA and PKC regulation of the cystic fibrosis transmembrane conductance regulator chloride channel. FASEB Bioadv. 2:33–48. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jarosz-Griffiths HH, Scambler T, Wong CH, Lara-Reyna S, Holbrook J, Martinon F, Savic S, Whitaker P, Etherington C, Spoletini G, et al: Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. Elife. 9:e545562020. View Article : Google Scholar : PubMed/NCBI | |
Jaworska J, Marach-Mocarska A and Sands D: Uncommon clinical presentation of cystic fibrosis in a patient homozygous for a rare CFTR mutation: A case report. BMC Pediatr. 20:902020. View Article : Google Scholar : PubMed/NCBI | |
Chen JH: Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. J Biol Chem. 295:4577–4590. 2020. View Article : Google Scholar : PubMed/NCBI | |
NandyMazumdar M, Yin S, Paranjapye A, Kerschner JL, Swahn H, Ge A, Leir SH and Harris A: Looping of upstream cis-regulatory elements is required for CFTR expression in human airway epithelial cells. Nucleic Acids Res. 48:3513–3524. 2020. View Article : Google Scholar : PubMed/NCBI | |
Laselva O, Stone TA, Bear CE and Deber CM: Anti-infectives restore ORKAMBI((R)) rescue of F508del-CFTR function in human bronchial epithelial cells infected with clinical strains of P. aeruginosa. Biomolecules. 10:3342020. View Article : Google Scholar | |
McCarron A, Cmielewski P, Reyne N, McIntyre C, Finnie J, Craig F, Rout-Pitt N, Delhove J, Schjenken JE, Chan HY, et al: Phenotypic characterization and comparison of cystic fibrosis Rat models generated using CRISPR/Cas9 gene editing. Am J Pathol. 190:977–993. 2020. View Article : Google Scholar : PubMed/NCBI | |
Froux L, Elbahnsi A, Boucherle B, Billet A, Baatallah N, Hoffmann B, Alliot J, Zelli R, Zeinyeh W, Haudecoeur R, et al: Targeting different binding sites in the CFTR structures allows to synergistically potentiate channel activity. Eur J Med Chem. 190:1121162020. View Article : Google Scholar : PubMed/NCBI | |
Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ and Muallem S: Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis. Nature. 410:94–97. 2001. View Article : Google Scholar : PubMed/NCBI | |
Van Mourik P, van Haaren P, Kruisselbrink E, Korkmaz C, Janssens HM, de Winter-de Groot KM, van der Ent CK, Hagemeijer MC and Beekman JM: R117H-CFTR function and response to VX-770 correlate with mRNA and protein expression in intestinal organoids. J Cyst Fibros. 2020.(Epub ahead of print). View Article : Google Scholar | |
De Santi C, Fernandez Fernandez E, Gaul R, Vencken S, Glasgow A, Oglesby IK, Hurley K, Hawkins F, Mitash N, Mu F, et al: Precise targeting of miRNA sites restores CFTR activity in CF bronchial epithelial cells. Mol Ther. 28:1190–1199. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jain R, Middleton PG and Rowe SM: Triple therapy for cystic fibrosis with a phe508del CFTR mutation. Reply. N Engl J Med. 382:6842020. View Article : Google Scholar : PubMed/NCBI | |
Morris-Rosendahl DJ, Edwards M, McDonnell MJ, John S, Alton EWFW, Davies JC and Simmonds NJ: Whole gene sequencing of CFTR reveals a high prevalence of the intronic variant c.3874-4522A>G in cystic fibrosis. Am J Respir Crit Care Med. 201:1438–1441. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gaillard DA, Carre-Pigeon F and Lallemand A: Normal vas deferens in fetuses with cystic fibrosis. J Urol. 158:1549–1552. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ferec C and Cutting GR: Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med. 2:a0094802012. View Article : Google Scholar : PubMed/NCBI | |
Tamburino L, Guglielmino A, Venti E and Chamayou S: Molecular analysis of mutations and polymorphisms in the CFTR gene in male infertility. Reprod Biomed Online. 17:27–35. 2008. View Article : Google Scholar : PubMed/NCBI | |
Patel B, Parets S, Akana M, Kellogg G, Jansen M, Chang C, Cai Y, Fox R, Niknazar M, Shraga R, et al: Comprehensive genetic testing for female and male infertility using next-generation sequencing. J Assist Reprod Genet. 35:1489–1496. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cuppens H and Cassiman JJ: CFTR mutations and polymorphisms in male infertility. Int J Androl. 27:251–256. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hinzpeter A, Aissat A, Sondo E, Costa C, Arous N, Gameiro C, Martin N, Tarze A, Weiss L, de Becdelièvre A, et al: Alternative splicing at a NAGNAG acceptor site as a novel phenotype modifier. PLoS Genet. 6:e10011532010. View Article : Google Scholar : PubMed/NCBI | |
Kopito RR: Biosynthesis and degradation of CFTR. Physiol Rev. 79 (1 Suppl):S167–S173. 1999. View Article : Google Scholar : PubMed/NCBI | |
Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR and Guggino WB: CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell. 81:1063–1073. 1995. View Article : Google Scholar : PubMed/NCBI | |
Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Riordan JR and Clarke DM: Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity. J Biol Chem. 271:27493–27499. 1996. View Article : Google Scholar : PubMed/NCBI | |
Highsmith WE, Burch LH, Zhou Z, Olsen JC, Boat TE, Spock A, Gorvoy JD, Quittel L, Friedman KJ, Silverman LM, et al: A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med. 331:974–980. 1994. View Article : Google Scholar : PubMed/NCBI | |
Green DM, McDougal KE, Blackman SM, Sosnay PR, Henderson LB, Naughton KM, Collaco JM and Cutting GR: Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients. Respir Res. 11:1402010. View Article : Google Scholar : PubMed/NCBI | |
Haardt M, Benharouga M, Lechardeur D, Kartner N and Lukacs GL: C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem. 274:21873–21877. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fulmer SB, Schwiebert EM, Morales MM, Guggino WB and Cutting GR: Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc Natl Acad Sci USA. 92:6832–6836. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bombieri C, Claustres M, De Boeck K, Derichs N, Dodge J, Girodon E, Sermet I, Schwarz M, Tzetis M, Wilschanski M, et al: Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros. 10 (Suppl 2):S86–S102. 2011. View Article : Google Scholar : PubMed/NCBI | |
Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, et al: Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France. Hum Mutat. 16:143–156. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cuppens H, Lin W, Jaspers M, Costes B, Teng H, Vankeerberghen A, Jorissen M, Droogmans G, Reynaert I, Goossens M, et al: Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J Clin Invest. 101:487–496. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kosova G, Pickrell JK, Kelley JL, McArdle PF, Shuldiner AR, Abney M and Ober C: The CFTR Met 470 allele is associated with lower birth rates in fertile men from a population isolate. PLoS Genet. 6:e10009742010. View Article : Google Scholar : PubMed/NCBI | |
Pompei F, Ciminelli BM, Bombieri C, Ciccacci C, Koudova M, Giorgi S, Belpinati F, Begnini A, Cerny M, Des Georges M, et al: Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations. Eur J Hum Genet. 14:85–93. 2006. View Article : Google Scholar : PubMed/NCBI | |
Du Q, Li Z, Pan Y, Liu X, Pan B and Wu B: The CFTR M470V, intron 8 poly-T, and 8 TG-repeats detection in Chinese males with congenital bilateral absence of the vas deferens. Biomed Res Int. 2014:6891852014. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Tana A and Shankar A: Cystic fibrosis--what are the prospects for a cure? Eur J Intern Med. 25:803–807. 2014. View Article : Google Scholar : PubMed/NCBI | |
Leonardi S, Pratico AD, Rotolo N, Di Dio G, Lionetti E and La Rosa M: Early acute pancreatitis in a child with compound heterozygosis F508/R1438W/Y1032C cystic fibrosis: A case report. J Med Case Rep. 7:1882013. View Article : Google Scholar : PubMed/NCBI | |
Wu CC, Hsieh-Li HM, Lin YM and Chiang HS: Cystic fibrosis transmembrane conductance regulator gene screening and clinical correlation in Taiwanese males with congenital bilateral absence of the vas deferens. Hum Reprod. 19:250–253. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zvereff VV, Faruki H, Edwards M and Friedman KJ: Cystic fibrosis carrier screening in a North American population. Genet Med. 16:539–546. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kornreich R, Ekstein J, Edelmann L and Desnick RJ: Premarital and prenatal screening for cystic fibrosis: Experience in the Ashkenazi Jewish population. Genet Med. 6:415–420. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sugarman EA, Rohlfs EM, Silverman LM and Allitto BA: CFTR mutation distribution among U.S. Hispanic and African American individuals: Evaluation in cystic fibrosis patient and carrier screening populations. Genet Med. 6:392–399. 2004. View Article : Google Scholar : PubMed/NCBI | |
Massie RJ, Poplawski N, Wilcken B, Goldblatt J, Byrnes C and Robertson C: Intron-8 polythymidine sequence in Australasian individuals with CF mutations R117H and R117C. Eur Respir J. 17:1195–1200. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kiesewetter S, Macek M Jr, Davis C, Curristin SM, Chu CS, Graham C, Shrimpton AE, Cashman SM, Tsui LC, Mickle J, et al: A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet. 5:274–278. 1993. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Wu X and Zhang Y, Yang X, Ma G, Chen S, Luo S and Zhang Y: A novel mutation (−195C>A) in the promoter region of CFTR gene is associated with Chinese congenital bilateral absence of vas deferens (CBAVD). Gene. 719:1440072019. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura K, Nakamura H, Trapnell BC, Dalemans W, Pavirani A, Lecocq JP and Crystal RG: The cystic fibrosis gene has a ‘housekeeping’-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem. 266:9140–9144. 1991.PubMed/NCBI | |
McCarthy VA and Harris A: The CFTR gene and regulation of its expression. Pediatr Pulmonol. 40:1–8. 2005. View Article : Google Scholar : PubMed/NCBI | |
Giordano S, Amato F, Elce A, Monti M, Iannone C, Pucci P, Seia M, Angioni A, Zarrilli F, Castaldo G and Tomaiuolo R: Molecular and functional analysis of the large 5′promoter region of CFTR gene revealed pathogenic mutations in CF and CFTR-related disorders. J Mol Diagn. 15:331–340. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chillon M, Casals T, Mercier B, Bassas L, Lissens W, Silber S, Romey MC, Ruiz-Romero J, Verlingue C, Claustres M, et al: Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med. 332:1475–1480. 1995. View Article : Google Scholar : PubMed/NCBI | |
Mak V, Jarvi KA, Zielenski J, Durie P and Tsui LC: Higher proportion of intact exon 9 CFTR mRNA in nasal epithelium compared with vas deferens. Hum Mol Genet. 6:2099–2107. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hwang TC and Sheppard DN: Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation. J Physiol. 587:2151–2161. 2009. View Article : Google Scholar : PubMed/NCBI | |
Radpour R, Gilani MA, Gourabi H, Dizaj AV and Mollamohamadi S: Molecular analysis of the IVS8-T splice variant 5T and M470V exon 10 missense polymorphism in Iranian males with congenital bilateral absence of the vas deferens. Mol Hum Reprod. 12:469–473. 2006. View Article : Google Scholar : PubMed/NCBI | |
Anzai C, Morokawa N, Okada H, Kamidono S, Eto Y and Yoshimura K: CFTR gene mutations in Japanese individuals with congenital bilateral absence of the vas deferens. J Cyst Fibros. 2:14–18. 2003. View Article : Google Scholar : PubMed/NCBI | |
Disset A, Michot C, Harris A, Buratti E, Claustres M and Tuffery-Giraud S: A T3 allele in the CFTR gene exacerbates exon 9 skipping in vas deferens and epididymal cell lines and is associated with congenital bilateral absence of vas deferens (CBAVD). Hum Mutat. 25:72–81. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nam MH, Hijikata M, Tuan LA, Lien LT, Shojima J, Horie T, Nakata K, Matsushita I, Ohashi J, Tokunaga K and Keicho N: Variations of the CFTR gene in the Hanoi-Vietnamese. Am J Med Genet A. 136:249–253. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ranum LP and Cooper TA: RNA-mediated neuromuscular disorders. Annu Rev Neurosci. 29:259–277. 2006. View Article : Google Scholar : PubMed/NCBI | |
Czajka-Oraniec I, Zgliczynski W, Kurylowicz A, Mikula M and Ostrowski J: Association between gynecomastia and aromatase (CYP19) polymorphisms. Eur J Endocrinol. 158:721–727. 2008. View Article : Google Scholar : PubMed/NCBI | |
Martin P, Makepeace K, Hill SA, Hood DW and Moxon ER: Microsatellite instability regulates transcription factor binding and gene expression. Proc Natl Acad Sci USA. 102:3800–3804. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lopez E, Viart V, Guittard C, Templin C, René C, Méchin D, Des Georges M, Claustres M, Romey-Chatelain MC and Taulan M: Variants in CFTR untranslated regions are associated with congenital bilateral absence of the vas deferens. J Med Genet. 48:152–159. 2011. View Article : Google Scholar : PubMed/NCBI | |
Silber SJ, Balmaceda J, Borrero C, Ord T and Asch R: Pregnancy with sperm aspiration from the proximal head of the epididymis: A new treatment for congenital absence of the vas deferens. Fertil Steril. 50:525–528. 1988. View Article : Google Scholar : PubMed/NCBI | |
Nicopoullos JD, Gilling-Smith C, Almeida PA and Ramsay JW: The results of 154 ICSI cycles using surgically retrieved sperm from azoospermic men. Hum Reprod. 19:579–585. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Lissens W, Silber SJ, Devroey P, Liebaers I and Van Steirteghem A: Birth after preimplantation diagnosis of the cystic fibrosis delta F508 mutation by polymerase chain reaction in human embryos resulting from intracytoplasmic sperm injection with epididymal sperm. JAMA. 272:1858–1860. 1994. View Article : Google Scholar : PubMed/NCBI | |
Rechitsky S, Verlinsky O and Kuliev A: PGD for cystic fibrosis patients and couples at risk of an additional genetic disorder combined with 24-chromosome aneuploidy testing. Reprod Biomed Online. 26:420–430. 2013. View Article : Google Scholar : PubMed/NCBI | |
Girardet A, Ishmukhametova A, Willems M, Coubes C, Hamamah S, Anahory T, Des Georges M and Claustres M: Preimplantation genetic diagnosis for cystic fibrosis: The montpellier center's 10-year experience. Clin Genet. 87:124–132. 2015. View Article : Google Scholar : PubMed/NCBI | |
McCallum TJ, Milunsky JM, Cunningham DL, Harris DH, Maher TA and Oates RD: Fertility in men with cystic fibrosis: An update on current surgical practices and outcomes. Chest. 118:1059–1062. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chiang HS, Wu CC, Wu YN, Lu JF, Lin GH and Hwang JL: CFTR mutation analysis of a Caucasian father with congenital bilateral absence of vas deferens, a Taiwanese mother, and twins resulting from ICSI procedure. J Formos Med Assoc. 107:736–740. 2008. View Article : Google Scholar : PubMed/NCBI |