1
|
Li J and Dong S: The signaling pathways
involved in chondrocyte differentiation and hypertrophic
differentiation. Stem Cells Int. 2016:24703512016. View Article : Google Scholar : PubMed/NCBI
|
2
|
James CG, Stanton LA, Agoston H, Ulici V,
Underhill TM and Beier F: Genome-wide analyses of gene expression
during mouse endochondral ossification. PLoS One. 5:e86932010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mackie E, Ahmed YA, Tatarczuch L, Chen KS
and Mirams M: Endochondral ossification: How cartilage is converted
into bone in the developing skeleton. Int J Biochem Cell Biol.
40:46–62. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mackie EJ, Tatarczuch L and Mirams M: The
skeleton: A multi-functional complex organ: The growth plate
chondrocyte and endochondral ossification. J Endocrinol.
211:109–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sun MM and Beier F: Chondrocyte
hypertrophy in skeletal development, growth, and disease. Birth
Defects Res C Embryo Today. 102:74–82. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang W, Chen J, Zhang S and Ouyang HW:
Inhibitory function of parathyroid hormone-related protein on
chondrocyte hypertrophy: The implication for articular cartilage
repair. Arthritis Res Ther. 14:2212012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rim YA, Nam Y and Ju JH: The role of
chondrocyte hypertrophy and senescence in osteoarthritis initiation
and progression. Int J Mol Sci. 21:23582020. View Article : Google Scholar
|
8
|
De Ruijter AJ, Van Gennip AH, Caron HN,
Stephan KE and Van Kuilenburg AB: Histone deacetylases (HDACs):
Characterization of the classical HDAC family. Biochem J.
370:737–749. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vega RB, Matsuda K, Oh J, Barbosa AC, Yang
X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, et
al: Histone deacetylase 4 controls chondrocyte hypertrophy during
skeletogenesis. Cell. 119:555–566. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nakatani T, Chen T, Johnson J, Westendorf
JJ and Partridge NC: The deletion of hdac4 in mouse osteoblasts
influences both catabolic and anabolic effects in bone. J Bone
Miner Res. 33:1362–1375. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nakatani T, Chen T and Partridge NC:
MMP-13 is one of the critical mediators of the effect of HDAC4
deletion on the skeleton. Bone. 90:142–151. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fu J, Li S, Feng R, Ma H, Sabeh F, Roodman
GD, Wang J, Robinson S, Guo XE, Lund T, et al: Multiple
myeloma-derived MMP-13 mediates osteoclast fusogenesis and
osteolytic disease. J Clin Invest. 126:1759–1772. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen W, Sheng P, Huang Z, Meng F, Kang Y,
Huang G and Zhang Z, Liao W and Zhang Z: MicroRNA-381 regulates
chondrocyte hypertrophy by inhibiting histone deacetylase 4
expression. Int J Mol Sci. 17:13772016. View Article : Google Scholar
|
14
|
Lories RJ, Corr M and Lane NE: To wnt or
not to wnt: The bone and joint health dilemma. Nat Rev Rheumatol.
9:328–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kikuchi A, Yamamoto H, Sato A and
Matsumoto S: Wnt5a: Its signalling, functions and implication in
diseases. Acta Physiol (Oxf). 204:17–33. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang Z, Qin G and Zhao TC: HDAC4:
Mechanism of regulation and biological functions. Epigenomics.
6:139–150. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang HM, Li XL, Tu SQ, Chen XF, Lu CC and
Jiang LH: Effects of roughly focused extracorporeal shock waves
therapy on the expressions of bone morphogenetic protein-2 and
osteoprotegerin in osteoporotic fracture in rats. Chin Med J
(Engl). 129:2567–2575. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shahi M, Peymani A and Sahmani M:
Regulation of bone metabolism. Rep Biochem Mol Biol. 5:73–82.
2017.PubMed/NCBI
|
19
|
Long F, Zhang XM, Karp S, Yang Y and
McMahon AP: Genetic manipulation of hedgehog signaling in the
endochondral skeleton reveals a direct role in the regulation of
chondrocyte proliferation. Development. 128:5099–5108.
2001.PubMed/NCBI
|
20
|
American Veterinary Medical Association, .
AVMA Guidelines for the Euthanasia of Animals: 2013 Edition.
https://www.avma.org/KB/Policies/Documents/euthanasia.pdf
|
21
|
Zhao GZ, Zhang LQ, Liu Y, Fang J, Li HZ,
Gao KH and Chen YZ: Effects of platelet-derived growth factor on
chondrocyte proliferation, migration and apoptosis via regulation
of GIT1 expression. Mol Med Rep. 14:897–903. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Estensoro I, Pérez-Cordón G,
Sitjà-Bobadilla A and Piazzon MC: Bromodeoxyuridine DNA labelling
reveals host and parasite proliferation in a fish-myxozoan model. J
Fish Dis. 41:651–662. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bourgine A, Pilet P, Diouani S, Sourice S,
Lesoeur J, Beck-Cormier S, Khoshniat S, Weiss P, Friedlander G,
Guicheux J and Beck L: Mice with hypomorphic expression of the
sodium-phosphate cotransporter PiT1/Slc20a1 have an unexpected
normal bone mineralization. PLoS One. 8:e659792013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Z, Wei X, Gao J, Zhao Y, Zhao Y, Guo
L, Chen C, Duan Z, Li P and Wei L: Intra-articular injection of
cross-linked hyaluronic acid-dexamethasone hydrogel attenuates
osteoarthritis: An experimental study in a rat model of
osteoarthritis. Int J Mol Sci. 17:4112016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu F, Fang F, Yuan H, Yang D, Chen Y,
Williams L, Goldstein SA, Krebsbach PH and Guan JL: Suppression of
autophagy by FIP200 deletion leads to osteopenia in mice through
the inhibition of osteoblast terminal differentiation. J Bone Miner
Res. 28:2414–2430. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Harris L, Zalucki O and Piper M: BrdU/EdU
dual labeling to determine the cell-cycle dynamics of defined
cellular subpopulations. J Mol Histol. 49:229–234. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fan L, Bi T, Wang L and Xiao W: DNA-damage
tolerance through PCNA ubiquitination and sumoylation. Biochem J.
477:2655–2677. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang M, Sampson ER, Jin H, Li J, Ke QH, Im
HJ and Chen D: MMP13 is a critical target gene during the
progression of osteoarthritis. Arthritis Res Ther. 15:R52013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Komori T: Runx2, an inducer of osteoblast
and chondrocyte differentiation. Histochem Cell Biol. 149:313–323.
2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen D, Liu Y, Liu Z and Wang P: OPG is
required for the postnatal maintenance of condylar cartilage.
Calcif Tissue Int. 104:461–474. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Eid AA, Lee DY, Roman LJ, Khazim K and
Gorin Y: Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent
endothelial nitric oxide synthase uncoupling and matrix protein
expression. Mol Cell Biol. 33:3439–3460. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Roux CH, Pisani DF, Gillet P, Fontas E,
Yahia HB, Djedaini M, Ambrosetti D, Michiels JF, Panaia-Ferrari P,
Breuil V, et al: Oxytocin controls chondrogenesis and correlates
with osteoarthritis. Int J Mol Sci. 21:39662020. View Article : Google Scholar
|
33
|
Michigami T: Wnt signaling and skeletal
dysplasias. Clin Calcium. 29:323–328. 2019.(In Japanese).
PubMed/NCBI
|
34
|
Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H,
He S, Shen F, Zeng H and Deng Y: Microglia-derived IL-1β
contributes to axon development disorders and synaptic deficit
through p38-MAPK signal pathway in septic neonatal rats. J
Neuroinflammation. 14:522017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zelzer E, Mamluk R, Ferrara N, Johnson RS,
Schipani E and Olsen BR: VEGFA is necessary for chondrocyte
survival during bone development. Development. 131:2161–2171. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhou J, Li P, Chen Q, Wei X, Zhao T, Wang
Z and Wei L: Mitogen-activated protein kinase p38 induces HDAC4
degradation in hypertrophic chondrocytes. Biochim Biophys Acta.
1853:370–376. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhou Y, Kipps TJ and Zhang S: Wnt5a
signaling in normal and cancer stem cells. Stem Cells Int.
2017:52952862017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kumawat K and Gosens R: WNT-5A: Signaling
and functions in health and disease. Cell Mol Life Sci. 73:567–587.
2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bouaziz W, Sigaux J, Modrowski D, Devignes
CS, Funck-Brentano T, Richette P, Ea HK, Provot S, Cohen-Solal M
and Haÿ E: Interaction of HIF1α and β-catenin inhibits matrix
metalloproteinase 13 expression and prevents cartilage damage in
mice. Proc Natl Acad Sci USA. 113:5453–5458. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nguyen L, Sharma A, Chakraborty C, Saibaba
B, Ahn ME and Lee SS: Review of prospects of biological fluid
biomarkers in osteoarthritis. Int J Mol Sci. 18:6012017. View Article : Google Scholar
|
43
|
Chen H, Ghori-Javed FY, Rashid H, Adhami
MD, Serra R, Gutierrez SE and Javed A: Runx2 regulates endochondral
ossification through control of chondrocyte proliferation and
differentiation. J Bone Miner Res. 29:2653–2665. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Walzer SM, Cetin E, Grübl-Barabas R,
Sulzbacher I, Rueger B, Girsch W, Toegel S, Windhager R and Fischer
MB: Vascularization of primary and secondary ossification centres
in the human growth plate. BMC Dev Biol. 14:362014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Filipowska J, Tomaszewski KA, Niedźwiedzki
Ł, Walocha JA and Niedźwiedzki T: The role of vasculature in bone
development, regeneration and proper systemic functioning.
Angiogenesis. 20:291–302. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hassanein S, Nasr Eldin MH, Amer HA,
Abdelhamid AE, El Houssinie M and Ibrahim A: Human umbilical cord
blood CD34-positive cells as predictors of the incidence and
short-term outcome of neonatal hypoxic-ischemic encephalopathy: A
pilot study. J Clin Neurol. 13:84–90. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Xuan F, Yano F, Mori D, Chijimatsu R,
Maenohara Y, Nakamoto H, Mori Y, Makii Y, Oichi T, Taketo MM, et
al: Wnt/β-catenin signaling contributes to articular cartilage
homeostasis through lubricin induction in the superficial zone.
Arthritis Res Ther. 21:2472019. View Article : Google Scholar : PubMed/NCBI
|