1
|
Kolligs FT: Diagnostics and Epidemiology
of Colorectal Cancer. Visc Med. 32:158–164. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Odintsova E, Voortman J, Gilbert E and
Berditchevski F: Tetraspanin CD82 regulates compartmentalisation
and ligand-induced dimerization of EGFR. J Cell Sci. 116:4557–4566.
2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maecker HT, Todd SC and Levy S: The
tetraspanin superfamily: Molecular facilitators. FASEB J.
11:428–442. 1997. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pique C, Lagaudrière-Gesbert C, Delamarre
L, Rosenberg AR, Conjeaud H and Dokhélar MC: Interaction of CD82
tetraspanin proteins with HTLV-1 envelope glycoproteins inhibits
cell-to-cell fusion and virus transmission. Virology. 276:455–465.
2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sigala S, Faraoni I, Botticini D,
Paez-Pereda M, Missale C, Bonmassar E and Spanol P: Suppression of
telomerase, reexpression of KAI1, and abrogation of tumorigenicity
by nerve growth factor in prostate cancer cell lines. Clin Cancer
Res. 5:1211–1218. 1999.PubMed/NCBI
|
6
|
Hinoda Y, Adachi Y, Takaoka A, Mitsuuchi
H, Satoh Y, Itoh F, Kondoh Y and Imai K: Decreased expression of
the metastasis suppressor gene KAI1 in gastric cancer. Cancer Lett.
129:229–234. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lombardi DP, Geradts J, Foley JF, Chiao C,
Lamb PW and Barrett JC: Loss of KAI1 expression in the progression
of colorectal cancer. Cancer Res. 59:5724–5731. 1999.PubMed/NCBI
|
8
|
Yang X, Welch DR, Phillips KK, Weissman BE
and Wei LL: KAI1, a putative marker for metastatic potential in
human breast cancer. Cancer Lett. 119:149–155. 1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Geradts J, Maynard R, Birrer MJ, Hendricks
D, Abbondanzo SL, Fong KM, Barrett JC and Lombardi DP: Frequent
loss of KAI1 expression in squamous and lymphoid neoplasms. An
immunohistochemical study of archival tissues. Am J Pathol.
154:1665–1671. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Adachi M, Taki T, Ieki Y, Huang CL,
Higashiyama M and Miyake M: Correlation of KAI1/CD82 gene
expression with good prognosis in patients with non-small cell lung
cancer. Cancer Res. 56:1751–1755. 1996.PubMed/NCBI
|
11
|
Friess H, Guo XZ, Tempia-Caliera AA,
Fukuda A, Martignoni ME, Zimmermann A, Korc M and Büchler MW:
Differential expression of metastasis-associated genes in papilla
of vater and pancreatic cancer correlates with disease stage. J
Clin Oncol. 19:2422–2432. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sun HC, Tang ZY, Zhou G and Li XM: KAI1
gene expression in hepatocellular carcinoma and its relationship
with intrahepatic metastases. J Exp Clin Cancer Res. 17:307–311.
1998.PubMed/NCBI
|
13
|
Guo XZ, Friess H, Di Mola FF, Heinicke JM,
Abou-Shady M, Graber HU, Baer HU, Zimmermann A, Korc M and Büchler
MW: KAI1, a new metastasis suppressor gene, is reduced in
metastatic hepatocellular carcinoma. Hepatology. 28:1481–1488.
1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hemler ME: Tetraspanin proteins mediate
cellular penetration, invasion, and fusion events and define a
novel type of membrane microdomain. Annu Rev Cell Dev Biol.
19:397–422. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Claas C, Stipp CS and Hemler ME:
Evaluation of prototype transmembrane 4 superfamily protein
complexes and their relation to lipid rafts. J Biol Chem.
276:7974–7984. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yarden Y and Sliwkowski MX: Untangling the
ErbB signalling network. Nat Rev Mol Cell Biol. 2:127–137. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Iwata S, Kobayashi H, Miyake-Nishijima R,
Sasaki T, Souta-Kuribara A, Nori M, Hosono O, Kawasaki H, Tanaka H
and Morimoto C: Distinctive signaling pathways through CD82 and
beta1 integrins in human T cells. Eur J Immunol. 32:1328–1337.
2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sugiura T and Berditchevski F: Function of
alpha3beta1-tetraspanin protein complexes in tumor cell invasion.
Evidence for the role of the complexes in production of matrix
metalloproteinase 2 (MMP-2). J Cell Biol. 146:1375–1389. 1999.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Odintsova E, Sugiura T and Berditchevski
F: Attenuation of EGF receptor signaling by a metastasis
suppressor, the tetraspanin CD82/KAI-1. Curr Biol. 10:1009–1012.
2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
van Echten G and Sandhoff K: Ganglioside
metabolism. Enzymology, Topology, and regulation. J Biol Chem.
268:5341–5344. 1993.PubMed/NCBI
|
21
|
Huwiler A, Kolter T, Pfeilschifter J and
Sandhoff K: Physiology and pathophysiology of sphingolipid
metabolism and signaling. Biochim Biophys Acta. 1485:63–99. 2000.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hakomori S: Glycosphingolipids in cellular
interaction, differentiation, and oncogenesis. Annu Rev Biochem.
50:733–764. 1981. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hakomori S: Tumor malignancy defined by
aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer
Res. 56:5309–5318. 1996.PubMed/NCBI
|
24
|
Birklé S, Zeng G, Gao L, Yu RK and Aubry
J: Role of tumor-associated gangliosides in cancer progression.
Biochimie. 85:455–463. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Regina Todeschini A and Hakomori SI:
Functional role of glycosphingolipids and gangliosides in control
of cell adhesion, motility, and growth, through glycosynaptic
microdomains. Biochim Biophys Acta. 1780:421–433. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hakomori SI: Glycosynaptic microdomains
controlling tumor cell phenotype through alteration of cell growth,
adhesion, and motility. FEBS Lett. 584:1901–1906. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
von Lindern JJ, Rojo D, Grovit-Ferbas K,
Yeramian C, Deng C, Herbein G, Ferguson MR, Pappas TC, Decker JM,
Singh A, et al: Potential role for CD63 in CCR5-mediated human
immunodeficiency virus type 1 infection of macrophages. J Virol.
77:3624–3633. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Park S-Y, Yoon S-J, Freire-de-Lima L, Kim
J-H and Hakomori SI: Control of cell motility by interaction of
gangliosides, tetraspanins, and epidermal growth factor receptor in
A431 versus KB epidermoid tumor cells. Carbohydr Res.
344:1479–1486. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Todeschini AR, Dos Santos JN, Handa K and
Hakomori SI: Ganglioside GM2/GM3 complex affixed on silica
nanospheres strongly inhibits cell motility through
CD82/cMet-mediated pathway. Proc Natl Acad Sci USA. 105:1925–1930.
2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Birchmeier C, Birchmeier W, Gherardi E and
Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol
Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tringali C, Silvestri I, Testa F,
Baldassari P, Anastasia L, Mortarini R, Anichini A, López-Requena
A, Tettamanti G and Venerando B: Molecular subtyping of metastatic
melanoma based on cell ganglioside metabolism profiles. BMC Cancer.
14:5602014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tanaka K, Miyazawa M, Mikami M, Aoki D,
Kiguchi K and Iwamori M: Enhanced expression of unique gangliosides
with GM2-determinant in human uterine cervical carcinoma-derived
cell lines. Glycoconj J. 33:745–754. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ladisch S and Gillard B: A solvent
partition method for microscale ganglioside purification. Anal
Biochem. 146:220–231. 1985. View Article : Google Scholar : PubMed/NCBI
|
34
|
Huang X, Li Y, Zhang J, Xu Y, Tian Y and
Ma K: Ganglioside GM3 inhibits hepatoma cell motility via
down-regulating activity of EGFR and PI3K/AKT signaling pathway. J
Cell Biochem. 114:1616–1624. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Leibovitz A, Stinson JC, McCombs WB III,
McCoy CE, Mazur KC and Mabry ND: Classification of human colorectal
adenocarcinoma cell lines. Cancer Res. 36:4562–4569.
1976.PubMed/NCBI
|
36
|
Davies MA: The role of the PI3K-AKT
pathway in melanoma. Cancer J. 18:142–147. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mook OR, Frederiks WM and Van Noorden CJ:
The role of gelatinases in colorectal cancer progression and
metastasis. Biochim Biophys Acta. 1705:69–89. 2004.PubMed/NCBI
|
38
|
Mueller KL, Powell K, Madden JM, Eblen ST
and Boerner JL: EGFR tyrosine 845 phosphorylation-dependent
proliferation and transformation of breast cancer cells require
activation of p38 MAPK. Transl Oncol. 5:327–334. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Y, Huang X, Zhang J, Li Y and Ma K:
Synergistic inhibition of cell migration by tetraspanin CD82 and
gangliosides occurs via the EGFR or cMet-activated Pl3K/Akt
signalling pathway. Int J Biochem Cell Biol. 45:2349–2358. 2013.
View Article : Google Scholar : PubMed/NCBI
|