1
|
Nabel EG and Braunwald E: A tale of
coronary artery disease and myocardial infarction. N Engl J Med.
366:54–63. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Writing Group Members, Mozaffarian D,
Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR,
Ferranti SD, Després JP, et al: Executive summary: Heart disease
and stroke statistics-2016 update: A report from the American Heart
Association. Circulation. 133:447–454. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Buja LM: Myocardial ischemia and
reperfusion injury. Cardiovasc Pathol. 14:170–175. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Levisman J and Price MJ: Update on the
guidelines for the management of ST-elevation myocardial
infarction. Am J Cardiol. 115 (Suppl 5):A3–A9. 2015. View Article : Google Scholar
|
5
|
Yellon DM and Hausenloy DJ: Myocardial
reperfusion injury. N Engl J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ibáñez B, Heusch G, Ovize M and Van de
Werf F: Evolving therapies for myocardial ischemia/reperfusion
injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lee MS: Role of mitochondrial function in
cell death and body metabolism. Front Biosci (Landmark Ed).
21:1233–1244. 2016. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Shen YQ, Guerra-Librero A, Fernandez-Gil
BI, Florido J, García-López S, Martinez-Ruiz L, Mendivil-Perez M,
Soto-Mercado V, Acuña-Castroviejo Dario, Ortega-Arellano H, et al:
Combination of melatonin and rapamycin for head and neck cancer
therapy: Suppression of AKT/mTOR pathway activation, and activation
of mitophagy and apoptosis via mitochondrial function regulation. J
Pineal Res. 64:e124612017. View Article : Google Scholar
|
9
|
Zhou H, Hu SY, Jin QH, Shi C, Zhang Y, Zhu
PJ, Ma Q, Tian F and Chen YD: Mff-dependent mitochondrial fission
contributes to the pathogenesis of cardiac microvasculature
ischemia/reperfusion injury via induction of mROS-Mmediated
cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP
opening. J Am Heart Assoc. 6:e0053282017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shires SE and Gustafsson AB: Mitophagy and
heart failure. J Mol Med (Berl). 93:253–262. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Saito T and Sadoshima J: Molecular
mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ
Res. 116:1477–1490. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Scarffe LA, Stevens DA, Dawson VL and
Dawson TM: Parkin and PINK1: Much more than mitophagy. Trends
Neurosci. 37:315–324. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hausenloy DJ and Scorrano L: Targeting
cell death. Clin Pharmacol Ther. 82:370–373. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liesa M, Palacin M and Zorzano A:
Mitochondrial dynamics in mammalian health and disease. Physiol
Rev. 89:799–845. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ingerman E, Perkins EM, Marino M, Mears
JA, McCaffery JM, Hinshaw JE and Nunnari J: Dnm1 forms spirals that
are structurally tailored to fit mitochondria. J Cell Biol.
170:1021–1027. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Smirnova E, Griparic L, Shurland DL and
van der Bliek AM: Dynamin-related protein Drp1 is required for
mitochondrial division in mammalian cells. Mol Biol Cell.
12:2245–2256. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rapaport D, Brunner M, Neupert W and
Westermann B: Fzo1p is a mitochondrial outer membrane protein
essential for the biogenesis of functional mitochondria in
Saccharomyces cerevisiae. J Biol Chem. 273:20150–20155. 1998.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Santel A and Fuller MT: Control of
mitochondrial morphology by a human mitofusin. J Cell Sci.
114:867–874. 2001.PubMed/NCBI
|
19
|
Hao M, Zhu S, Hu L, Zhu H, Wu X and Li Q:
Myocardial ischemic postconditioning promotes autophagy against
ischemia reperfusion injury via the activation of the
nNOS/AMPK/mTOR pathway. Int J Mol Sci. 18:6142017. View Article : Google Scholar
|
20
|
Jian J, Xuan F, Qin F and Huang R:
Bauhinia championii flavone inhibits apoptosis and autophagy via
the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in
rats. Drug Des Devel Ther. 9:5933–5945. 2015.PubMed/NCBI
|
21
|
Xuan F and Jian J: Epigallocatechin
gallate exerts protective effects against myocardial
ischemia/reperfusion injury through the PI3K/Akt pathway-mediated
inhibition of apoptosis and the restoration of the autophagic flux.
Int J Mol Med. 38:328–336. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hariharan N, Zhai P and Sadoshima J:
Oxidative stress stimulates autophagic flux during
ischemia/reperfusion. Antioxid Redox Signal. 14:2179–2190. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kang R, Zeh HJ, Lotze MT and Tang D: The
Beclin 1 network regulates autophagy and apoptosis. Cell Death
Differ. 18:571–580. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yu L, McPhee CK, Zheng LX, Mardones GA,
Rong YG, Peng JY, Mi N, Zhao Y, Liu ZH and Wan FY: Termination of
autophagy and reformation of lysosomes regulated by mTOR. Nature.
465:942–946. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Han YF, Zhao YB, Li J, Li L, Li YG, Li SP
and Li ZD: Stat3-Atg5 signal axis inducing autophagy to alleviate
hepatic ischemia-reperfusion injury. J Cell Biochem. 119:3440–3450.
2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pópulo H, Lopes JM and Soares P: The mTOR
signalling pathway in human cancer. Int J Mol Sci. 13:1886–1918.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bramham CR, Jensen KB and Proud CG: Tuning
specific translation in cancer metastasis and synaptic memory:
Control at the MNK-eIF4E axis. Trends Biochem Sci. 41:847–858.
2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Foster SS, De S, Johnson LK, Petrini JH
and Stracker TH: Cell cycle- and DNA repair pathway-specific
effects of apoptosis on tumor suppression. Proc Natl Acad Sci USA.
109:9953–9958. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tasdemir E, Maiuri MC, Galluzzi L, Vitale
I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C,
Harper F, et al: Regulation of autophagy by cytoplasmic p53. Nat
Cell Biol. 10:676–687. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Crighton D, Wilkinson S, O'Prey J, Syed N,
Smith P, Harrison PR, Gasco M, Garrone O, Crook T and Ryan KM:
DRAM, a p53-induced modulator of autophagy, is critical for
apoptosis. Cell. 126:121–134. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dekleva M, Neskovic A, Vlahovic A,
Putnikovic B, Beleslin B and Ostojic M: Adjunctive effect of
hyperbaric oxygen treatment after thrombolysis on left ventricular
function in patients with acute myocardial infarction. Am Heart J.
148:0312004. View Article : Google Scholar
|
32
|
Bennett MH, Lehm JP and Jepson N:
Hyperbaric oxygen therapy for acute coronary syndrome. Cochrane
Database Syst Rev. 7:CD0048182015.
|
33
|
Rusyniak DE, Kirk MA, May JD, Kao LW,
Brizendine EJ, Welch JL, Cordell WH and Alonso RJ: Hyperbaric
oxygen therapy in acute ischemic stroke: Results of the hyperbaric
oxygen in acute ischemic stroke trial pilot study. Stroke.
34:571–574. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu WC, Yang SN, Wu CW, Chen LW and Chan
JY: Hyperbaric oxygen therapy alleviates carbon monoxide
poisoning-induced delayed memory impairment by preserving
brain-derived neurotrophic factor-dependent hippocampal
neurogenesis. Crit Care Med. 44:e25–39. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fife CE, Eckert KA and Workman WT: Ethical
issues, standards, and quality control in the practice of
hyperbaric medicine. Springer; Switzerland: Textbook of Hyperbaric
Medicine. pp. 597–608. 2016
|
36
|
Pan X, Chen C, Huang J, Wei H and Fan Q:
Neuroprotective effect of combined therapy with hyperbaric oxygen
and madopar on 6-hydroxydopamine-induced Parkinson's disease in
rats. Neurosci Lett. 600:220–225. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen CX, Fan QP, Nong ZH, Chen W, Li YX,
Huang LY, Feng DR, Pan XR and Lan SY: Hyperbaric oxygen attenuates
withdrawal symptoms by regulating monoaminergic neurotransmitters
and NO signaling pathway at nucleus accumbens in morphine-dependent
rats. Neurochem Res. 43:531–539. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen CX, Huang LY, Nong ZH, Li YX, Chen W,
Huang JP, Pan XR, Wu GW and Lin YZ: Hyperbaric oxygen prevents
cognitive impairments in mice induced by D-galactose by improving
cholinergic and anti-apoptotic functions. Neurochem Res.
42:1240–1253. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen X, Li Y, Chen W, Nong Z, Huang J and
Chen C: Protective effect of hyperbaric oxygen on cognitive
impairment induced by D-galactose in mice. Neurochem Res.
41:3032–3041. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen C, Chen W, Nong Z, Ma Y, Qiu S and Wu
G: Cardioprotective effects of combined therapy with hyperbaric
oxygen and diltiazem pretreatment on myocardial
ischemia-reperfusion injury in rats. Cell Physiol Biochem.
38:2015–2029. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bøtker HE, Hausenloy D, Andreadou I,
Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Lisa FD,
Sante MD, et al: Practical guidelines for rigor and reproducibility
in preclinical and clinical studies on cardioprotection. Basic Res
Cardiol. 113:018–0696. 2018. View Article : Google Scholar
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Qiao X, Jia S, Ye J, Fang X, Zhang C, Cao
Y, Xu C, Zhao L, Zhu Y, Wang L and Zheng M: PTPIP51 regulates mouse
cardiac ischemia/reperfusion through mediating the mitochondria-SR
junction. Sci Rep. 7:453792017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cook SA, Sugden PH and Clerk A: Regulation
of bcl-2 family proteins during development and in response to
oxidative stress in cardiac myocytes: Association with changes in
mitochondrial membrane potential. Circ Res. 85:940–949. 1999.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Farber JL: Mechanisms of cell injury by
activated oxygen species. Environ Health Perspect. 10 (Suppl
10):S17–S24. 1994. View Article : Google Scholar
|
46
|
Kalogeris T, Baines CP, Krenz M and
Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev
Cell Mol Biol. 298:229–317. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zorov DB, Juhaszova M and Sollott SJ:
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang T, Zhang Y, Cui MY, Jin L, Wang YM,
Lv FX, Liu YL, Zheng W, Shang HB, Zhang J, et al: CaMKII is a RIP3
substrate mediating ischemia- and oxidative stress-induced
myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Twig G, Elorza A, Molina AJA, Mohamed H,
Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, et al:
Fission and selective fusion govern mitochondrial segregation and
elimination by autophagy. EMBO J. 27:433–446. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Brooks C, Wei Q, Cho SG and Dong Z:
Regulation of mitochondrial dynamics in acute kidney injury in cell
culture and rodent models. J Clin Invest. 119:1275–1285. 2009.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Estaquier J and Arnoult D: Inhibiting
Drp1-mediated mitochondrial fission selectively prevents the
release of cytochrome c during apoptosis. Cell Death Differ.
14:1086–1094. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lander ES and Lodish H: Mitochondrial
diseases: Gene mapping and gene therapy. Cell. 61:925–926. 1990.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Borst P and Grivell LA: The mitochondrial
genome of yeast. Cell. 15:705–723. 1978. View Article : Google Scholar : PubMed/NCBI
|
54
|
Haendeler J, Dröse S, Büchner N, Jakob S,
Altschmid J, Goy C, Spyridopoulos L, Zeiher AM, Brandt U and
Dimmeler S: Mitochondrial telomerase reverse transcriptase binds to
and protects mitochondrial DNA and function from damage.
Arterioscler Thromb Vasc Biol. 29:929–935. 2009. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ong SB, Subrayan S, Lim SY, Yellon DM,
Davidson SM and Hausenloy DJ: Inhibiting mitochondrial fission
protects the heart against ischemia/reperfusion injury.
Circulation. 121:2012–2022. 2010. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ong SB, Hall AR and Hausenloy DJ:
Mitochondrial dynamics in cardiovascular health and disease.
Antioxid Redox Signal. 19:400–414. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhang Y, Zhang L, Zhang Y, Fan X, Yang WW,
Yu BY, Kou JP and Li F: YiQiFuMai powder injection attenuates
coronary artery ligation-induced heart failure through improving
mitochondrial function via regulating ROS generation and CaMKII
signaling pathways. Front Pharmacol. 10:3812019. View Article : Google Scholar : PubMed/NCBI
|
58
|
Ma H, Guo R, Yu L, Zhang Y and Ren J:
Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial
ischaemia/reperfusion injury: Role of autophagy paradox and toxic
aldehyde. Eur Heart J. 32:1025–1038. 2011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Ma X, Liu H, Foyil SR, Godar RJ,
Weinheimer CJ and Diwan A: Autophagy is impaired in cardiac
ischemia-reperfusion injury. Autophagy. 8:1394–1396. 2012.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Dong W, Yang R, Yang J, Ding J, Wu H and
Zhang J: Resveratrol pretreatment protects rat hearts from
ischemia/reperfusion injury partly via a NALP3 inflammasome
pathway. Int J Clin Exp Pathol. 8:8731–8741. 2015.PubMed/NCBI
|
61
|
Rabanal-Ruiz Y, Otten EG and Korolchuk VI:
mTORC1 as the main gateway to autophagy. Essays Biochem.
61:565–584. 2017. View Article : Google Scholar : PubMed/NCBI
|
62
|
Yang Z and Klionsky DJ: Mammalian
autophagy: Core molecular machinery and signaling regulation. Curr
Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar : PubMed/NCBI
|
63
|
Dan E, Joungmok K, Shaw RJ and Kun-Liang
G: The autophagy initiating kinase ULK1 is regulated via opposing
phosphorylation by AMPK and mTOR. Autophagy. 7:643–644. 2011.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Hardie DG: AMP-activated/SNF1 protein
kinases: Conserved guardians of cellular energy. Nat Rev Mol Cell
Biol. 8:774–785. 2007. View Article : Google Scholar : PubMed/NCBI
|
65
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Luo S and Rubinsztein DC: Apoptosis blocks
Beclin 1-dependent autophagosome synthesis: An effect rescued by
Bcl-xL. Cell Death Differ. 17:268–277. 2010. View Article : Google Scholar : PubMed/NCBI
|
67
|
Yang B and Zhao S: Polydatin regulates
proliferation, apoptosis and autophagy in multiple myeloma cells
through mTOR/p70s6k pathway. Onco Targets Ther. 10:935–944. 2017.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Liu CY, Zhang YH, Li RB, Zhou LY, An Tao,
Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, et al: lncRNA CAIF
inhibits autophagy and attenuates myocardial infarction by blocking
p53-mediated myocardin transcription. Nat Commun. 9:292018.
View Article : Google Scholar : PubMed/NCBI
|
69
|
Guo X, Jiang H, Yang J, Chen J, Yang J,
Ding JW, Li S, Wu H and Ding HS: Radioprotective 105 kDa protein
attenuates ischemia/reperfusion-induced myocardial apoptosis and
autophagy by inhibiting the activation of the TLR4/NF-κB signaling
pathway in rats. Int J Mol Med. 38:885–893. 2016. View Article : Google Scholar : PubMed/NCBI
|