1
|
Kahn RS, Sommer IE, Murray RM,
Meyer-Lindenberg A, Weinberger DR, Cannon TD, O'Donovan M, Correll
CU, Kane JM, van Os J and Insel TR: Schizophrenia. Nat Rev Dis
Primers. 1:150672015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gillespie AL, Samanaite R, Mill J, Egerton
A and MacCabe JH: Is treatment-resistant schizophrenia
categorically distinct from treatment-responsive schizophrenia? A
systematic review. BMC Psychiatry. 17:122017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lehman AF, Lieberman JA, Dixon LB,
McGlashan TH, Miller AL, Perkins DO and Kreyenbuhl J; American
Psychiatric Association; Steering Committee on Practice Guidelines,
: Practice guideline for the treatment of patients with
schizophrenia, second edition. Am J Psychiatry. 161:1–56.
2004.PubMed/NCBI
|
4
|
Samara MT, Dold M, Gianatsi M,
Nikolakopoulou A, Helfer B, Salanti G and Leucht S: Efficacy,
acceptability, and tolerability of antipsychotics in
treatment-resistant schizophrenia: A network meta-analysis. JAMA
Psychiatry. 73:199–210. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lakhan SE and Kramer A: Schizophrenia
genomics and proteomics: Are we any closer to biomarker discovery?
Behav Brain Funct. 5:22009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schwarz E and Bahn S: Biomarker discovery
in psychiatric disorders. Electrophoresis. 29:2884–2890.
2008.PubMed/NCBI
|
7
|
Schwarz E and Bahn S: The utility of
biomarker discovery approaches for the detection of disease
mechanisms in psychiatric disorders. Br J Pharmacol. 153:S133–S136.
2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qureshi IA and Mehler MF: Emerging roles
of non-coding RNAs in brain evolution, development, plasticity and
disease. Nat Rev Neurosci. 13:528–541. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tsankova N, Renthal W, Kumar A and Nestler
EJ: Epigenetic regulation in psychiatric disorders. Nat Rev
Neurosci. 8:355–367. 2007. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Sullivan PF, Fan C and Perou CM:
Evaluating the comparability of gene expression in blood and brain.
Am J Med Genet B Neuropsychiatr Genet. 141:261–268. 2006.
View Article : Google Scholar
|
11
|
Vawter MP, Ferran E, Galke B, Cooper K,
Bunney WE and Byerley W: Microarray screening of lymphocyte gene
expression differences in a multiplex schizophrenia pedigree.
Schizophr Res. 67:41–52. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Glatt SJ, Everall IP, Kremen WS, Corbeil
J, Sásik R, Khanlou N, Han M, Liew CC and Tsuang MT: Comparative
gene expression analysis of blood and brain provides concurrent
validation of SELENBP1 up-regulation in schizophrenia. Proc Natl
Acad Sci USA. 102:15533–15538. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kuzman MR, Medved V, Terzic J and Krainc
D: Genome-wide expression analysis of peripheral blood identifies
candidate biomarkers for schizophrenia. J Psychiatr Res.
43:1073–1077. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Maffioletti E, Tardito D, Gennarelli M and
Bocchio-Chiavetto L: Micro spies from the brain to the periphery:
New clues from studies on microRNAs in neuropsychiatric disorders.
Front Cell Neurosci. 8:752014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng
S, Wei J, Yang X, Qian L, Zhou S, et al: The effects and the
mechanisms of autophagy on the cancer-associated fibroblasts in
cancer. J Exp Clin Cancer Res. 38:1712019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li H, Zhou DS, Chang H, Wang L, Liu W, Dai
SX, Zhang C, Cai J, Liu W, Li X, et al: Interactome Analyses
implicated CAMK2A in the genetic predisposition and pharmacological
mechanism of bipolar disorder. J Psychiatr Res. 115:165–175. 2019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yan Y, Gong Z and Xu Z: Commentary: Lico A
causes ER stress and apoptosis via up-regulating miR-144-3p in
human lung cancer cell line H292. Biomed J. 41:391–392. 2018.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu Z, Yan Y, Zeng S, Dai S, Chen X, Wei J
and Gong Z: Circular RNAs: Clinical relevance in cancer.
Oncotarget. 9:1444–1460. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Perkins DO, Jeffries C and Sullivan P:
Expanding the ‘central dogma’: The regulatory role of nonprotein
coding genes and implications for the genetic liability to
schizophrenia. Mol Psychiatry. 10:69–78. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cheng HY, Papp JW, Varlamova O, Dziema H,
Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S
and Obrietan K: MicroRNA modulation of circadian-clock period and
entrainment. Neuron. 54:813–829. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kocerha J, Faghihi MA, Lopez-Toledano MA,
Huang J, Ramsey AJ, Caron MG, Sales N, Willoughby D, Elmen J,
Hansen HF, et al: MicroRNA-219 modulates NMDA receptor-mediated
neurobehavioral dysfunction. Proc Natl Acad Sci USA. 106:3507–3512.
2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Coyle JT: MicroRNAs suggest a new
mechanism for altered brain gene expression in schizophrenia. Proc
Natl Acad Sci USA. 106:2975–2976. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Miller BH and Wahlestedt C: MicroRNA
dysregulation in psychiatric disease. Brain Res. 1338:89–99. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Gladkevich A, Kauffman HF and Korf J:
Lymphocytes as a neural probe: Potential for studying psychiatric
disorders. Prog Neuropsychopharmacol Biol Psychiatry. 28:559–576.
2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Marques-Deak A, Cizza G and Sternberg E:
Brain-Immune interactions and disease susceptibility. Mol
Psychiatry. 10:239–250. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Marazziti D, Catena Dell'osso M, Baroni S,
Masala I, Dell'Osso B, Consoli G, Giannaccini G, Betti L and
Lucacchini A: Alterations of the dopamine transporter in resting
lymphocytes of patients with different psychotic disorders.
Psychiatry Res. 175:54–57. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY,
Wen CC, Huang YH, Hsiao PC, Hsiao CK, Liu CM, et al: MicroRNA
expression aberration as potential peripheral blood biomarkers for
schizophrenia. PLoS One. 6:e216352011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sun Xy, Lu J, Zhang L, Song Ht, Zhao L,
Fan Hm, Zhong Af, Niu W, Guo Zm, Dai Yh, et al: Aberrant microRNA
expression in peripheral plasma and mononuclear cells as specific
blood-based biomarkers in schizophrenia patients. J Clin Neurosci.
22:570–574. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wei H, Yuan Y, Liu S, Wang C, Yang F, Lu
Z, Wang C, Deng H, Zhao J, Shen Y, et al: Detection of circulating
miRNA levels in schizophrenia. Am J Psychiatry. 172:1141–1147.
2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu S, Zhang F, Shugart YY, Yang L, Li X,
Liu Z, Sun N, Yang C, Guo X, Shi J, et al: The early growth
response protein 1-miR-30a-5p-neurogenic differentiation factor 1
axis as a novel biomarker for schizophrenia diagnosis and treatment
monitoring. Transl Psychiatry. 7:e9982017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kalia M and Silva JC: Biomarkers of
psychiatric diseases: Current status and future prospects.
Metabolism. 64:S11–S15. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tandon R, Gaebel W, Barch DM, Bustillo J,
Gur RE, Heckers S, Malaspina D, Owen MJ, Schultz S, Tsuang M, et
al: Definition and description of schizophrenia in the DSM-5.
Schizophr Res. 150:3–10. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rao X, Huang X, Zhou Z and Lin X: An
improvement of the 2^(-delta delta CT) method for quantitative
real-time polymerase chain reaction data analysis. Biostat
Bioinforma Biomath. 3:71–85. 2013.PubMed/NCBI
|
35
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
ELife. 4:e050052015. View Article : Google Scholar
|
36
|
Paraskevopoulou MD, Georgakilas G,
Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C,
Dalamagas T and Hatzigeorgiou AG: DIANA-microT web server v5.0:
Service integration into miRNA functional analysis workflows.
Nucleic Acids Res. 41:W169–W173. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang X, Su R, Guo Q, Liu J, Ruan B and
Wang G: Competing endogenous RNA (ceRNA) hypothetic model based on
comprehensive analysis of long non-coding RNA expression in lung
adenocarcinoma. Peer J. 7:e80242019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Meltzer HY: Treatment-resistant
schizophrenia-the role of clozapine. Curr Med Res Opin. 14:1–20.
1997. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wimberley T, Gasse C, Meier SM, Agerbo E,
MacCabe JH and Horsdal HT: Polygenic risk score for schizophrenia
and treatment-resistant schizophrenia. Schizophr Bull.
43:1064–1069. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ashley EA: Towards precision medicine. Nat
Rev Genet. 17:507–522. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tonelli MR and Shirts BH: Knowledge for
precision medicine: Mechanistic reasoning and methodological
pluralism. JAMA. 318:1649–1650. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Alda M: Personalized psychiatry: Many
questions, fewer answers. J Psychiatry Neurosci. 38:363–365. 2013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Manchia M, Pisanu C, Squassina A and
Carpiniello B: Challenges and future prospects of precision
medicine in psychiatry. Pharmgenomics Pers Med. 13:127–140.
2020.PubMed/NCBI
|
44
|
Kochunov P, Hong LE, Dennis EL, Morey RA,
Tate DF, Wilde EA, Logue M, Kelly S, Donohoe G, Favre P, et al:
ENIGMA-DTI: Translating reproducible white matter deficits into
personalized vulnerability metrics in cross-diagnostic psychiatric
research. Human Brain Mapp. 16:249982020. View Article : Google Scholar
|
45
|
Thompson PM, Jahanshad N, Ching CR,
Salminen LE, Thomopoulos SI, Bright J, Baune BT, Bertolín S,
Bralten J, Bruin WB, et al: ENIGMA and global neuroscience: A
decade of large-scale studies of the brain in health and disease
across more than 40 countries. Transl Psychiatry. 10:1002020.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Holleran L, Kelly S, Alloza C, Agartz I,
Andreassen OA, Arango C, Banaj N, Calhoun V, Cannon D, Carr V, et
al: The relationship between white matter microstructure and
general cognitive ability in patients with schizophrenia and
healthy participants in the ENIGMA consortium. Am J Psychiatry.
177:537–547. 2020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Boloc D, Rodríguez N, Torres T,
García-Cerro S, Parellada M, Saiz-Ruiz J, Cuesta MJ, Bernardo M,
Gassó P, Lafuente A, et al: Identifying key transcription factors
for pharmacogenetic studies of antipsychotics induced
extrapyramidal symptoms. Psychopharmacology (Berl). 237:2151–2159.
2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Heinla I, Leidmaa E, Kongi K, Pennert A,
Innos J, Nurk K, Tekko T, Singh K, Vanaveski T, Reimets R, et al:
Gene expression patterns and environmental enrichment-induced
effects in the hippocampi of mice suggest importance of lsamp in
plasticity. Front Neurosci. 9:2052015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Rees E and Owen MJ: Translating insights
from neuropsychiatric genetics and genomics for precision
psychiatry. Genome Med. 12:432020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Birnbaum R and Weinberger DR: Special
article: Translational science update. Pharmacological implications
of emerging schizophrenia genetics: Can the bridge from ‘Genomics’
to ‘Therapeutics’ be defined and traversed? J Clin Psychopharmacol.
40:323–329. 2020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chakos M, Lieberman J, Hoffman E, Bradford
D and Sheitman B: Effectiveness of second-generation antipsychotics
in patients with treatment-resistant schizophrenia: A review and
meta-analysis of randomized trials. Am J Psychiatry. 158:518–526.
2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wahlbeck K, Cheine M, Essali A and Adams
C: Evidence of clozapine's effectiveness in schizophrenia: A
systematic review and meta-analysis of randomized trials. Am J
Psychiatry. 156:990–999. 1999.PubMed/NCBI
|
53
|
Meltzer HY: Treatment of the
neuroleptic-nonresponsive schizophrenic patient. Schizophr Bull.
18:515–542. 1992. View Article : Google Scholar : PubMed/NCBI
|
54
|
Siskind DJ, Lee M, Ravindran A, Zhang Q,
Ma E, Motamarri B and Kisely S: Augmentation strategies for
clozapine refractory schizophrenia: A systematic review and
meta-analysis. Aust N Z J Psychiatry. 52:751–767. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
van Westrhenen R, Aitchison KJ,
Ingelman-Sundberg M and Jukić MM: Pharmacogenomics of
antidepressant and antipsychotic treatment: How far have we got and
where are we going? Front Psychiatry. 11:942020. View Article : Google Scholar : PubMed/NCBI
|
56
|
Relling MV and Evans WE: Pharmacogenomics
in the clinic. Nature. 526:343–350. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhang JP and Malhotra AK: Recent progress
in pharmacogenomics of antipsychotic drug response. Curr Psychiatry
Rep. 20:242018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Feinberg AP and Fallin MD: Epigenetics at
the crossroads of genes and the environment. JAMA. 314:1129–1130.
2015. View Article : Google Scholar : PubMed/NCBI
|
59
|
Nucifora FC, Woznica E, Lee BJ, Cascella N
and Sawa A: Treatment resistant schizophrenia: Clinical,
biological, and therapeutic perspectives. Neurobiol Dis.
131:1042572019. View Article : Google Scholar : PubMed/NCBI
|
60
|
Fisar Z and Raboch J: Depression,
antidepressants, and peripheral blood components. Neuro Endocrinol
Lett. 29:17–28. 2008.PubMed/NCBI
|
61
|
Cattaneo A, Sesta A, Calabrese F, Nielsen
G, Riva MA and Gennarelli M: The expression of VGF is reduced in
leukocytes of depressed patients and it is restored by effective
antidepressant treatment. Neuropsychopharmacology. 35:1423–1428.
2010. View Article : Google Scholar : PubMed/NCBI
|
62
|
Chen SD, Sun XY, Niu W, Kong LM, He MJ,
Fan HM, Li WS, Zhong AF, Zhang LY and Lu J: A preliminary analysis
of microRNA-21 expression alteration after antipsychotic treatment
in patients with schizophrenia. Psychiatry Res. 244:324–332. 2016.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Liang Y, Ridzon D, Wong L and Chen C:
Characterization of microRNA expression profiles in normal human
tissues. BMC Genomics. 8:1662007. View Article : Google Scholar : PubMed/NCBI
|
64
|
Zhao Z, Jinde S, Koike S, Tada M, Satomura
Y, Yoshikawa A, Nishimura Y, Takizawa R, Kinoshita A, Sakakibara E,
et al: Altered expression of microRNA-223 in the plasma of patients
with first-episode schizophrenia and its possible relation to
neuronal migration-related genes. Transl Psychiatry. 9:2892019.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Sun Xy, Zhang J, Niu W, Guo W, Song Ht, Li
Hy, Fan Hm, Zhao L, Zhong Af, Dai Yh, et al: A preliminary analysis
of microRNA as potential clinical biomarker for schizophrenia. Am J
Med Genet B Neuropsychiatr Genet. 168:170–178. 2015. View Article : Google Scholar
|
66
|
He K, Guo C, He L and Shi Y: miRNAs of
peripheral blood as the biomarker of schizophrenia. Hereditas.
155:92018. View Article : Google Scholar : PubMed/NCBI
|
67
|
Liu S, Zhang F, Wang X, Shugart YY, Zhao
Y, Li X, Liu Z, Sun N, Yang C, Zhang K, et al: Diagnostic value of
blood-derived microRNAs for schizophrenia: Results of a
meta-analysis and validation. Sci Rep. 7:153282017. View Article : Google Scholar : PubMed/NCBI
|
68
|
Inada T, Nakamura A and Iijima Y:
Relationship between catechol-O-methyltransferase polymorphism and
treatment-resistant schizophrenia. Am J Med Genet B Neuropsychiatr
Genet. 120:35–39. 2003. View Article : Google Scholar
|
69
|
Ji X, Takahashi N, Saito S, Ishihara R,
Maeno N, Inada T and Ozaki N: Relationship between three serotonin
receptor subtypes (HTR3A, HTR2A and HTR4) and treatment-resistant
schizophrenia in the Japanese population. Neurosci Lett. 435:95–98.
2008. View Article : Google Scholar : PubMed/NCBI
|
70
|
Kohlrausch FB, Gama CS, Lobato MI,
Belmonte-de-Abreu P, Callegari-Jacques SM, Gesteira A, Barros F,
Carracedo A and Hutz MH: Naturalistic pharmacogenetic study of
treatment resistance to typical neuroleptics in European-Brazilian
schizophrenics. Pharmacogenet Genomics. 18:599–609. 2008.
View Article : Google Scholar : PubMed/NCBI
|
71
|
Bilic P, Jukic V, Vilibic M, Savic A and
Bozina N: Treatment- Resistant schizophrenia and DAT and SERT
polymorphisms. Gene. 543:125–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
72
|
Terzić T, Kastelic M, Dolžan V and
Plesničar BK: Influence of 5-HT1A and 5-HTTLPR genetic variants on
the schizophrenia symptoms and occurrence of treatment-resistant
schizophrenia. Neuropsychiatr Dis Treat. 11:453–459.
2015.PubMed/NCBI
|
73
|
Catts VS, Fung SJ, Long LE, Joshi D,
Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari
Y, et al: Rethinking schizophrenia in the context of normal
neurodevelopment. Front Cell Neurosci. 7:602013. View Article : Google Scholar : PubMed/NCBI
|
74
|
Alexander-Bloch AF, Reiss PT, Rapoport J,
McAdams H, Giedd JN, Bullmore ET and Gogtay N: Abnormal cortical
growth in schizophrenia targets normative modules of synchronized
development. Biol Psychiatry. 76:438–446. 2014. View Article : Google Scholar : PubMed/NCBI
|
75
|
Horváth S and Mirnics K: Schizophrenia as
a disorder of molecular pathways. Biol Psychiatry. 77:22–28. 2015.
View Article : Google Scholar : PubMed/NCBI
|
76
|
Pickard BS, Malloy MP, Clark L, Lehellard
S, Ewald HL, Mors O, Porteous DJ, Blackwood DH and Muir WJ:
Candidate psychiatric illness genes identified in patients with
pericentric inversions of chromosome 18. Psychiatr Genet. 15:37–44.
2005. View Article : Google Scholar : PubMed/NCBI
|
77
|
Zheng Q, Zhao LY, Kong Y, Nan KJ, Yao Y
and Liao ZJ: CDK-Associated cullin 1 can promote cell proliferation
and inhibit cisplatin-induced apoptosis in the AGS gastric cancer
cell line. World J Surg Oncol. 11:52013. View Article : Google Scholar : PubMed/NCBI
|
78
|
Choi H, Lee SH, Um SJ and Kim EJ: CACUL1
functions as a negative regulator of androgen receptor in prostate
cancer cells. Cancer Lett. 376:360–366. 2016. View Article : Google Scholar : PubMed/NCBI
|
79
|
Chen TJ, Gao F, Yang T, Thakur A, Ren H,
Li Y, Zhang S, Wang T and Chen MW: CDK-Associated cullin 1 promotes
cell proliferation with activation of ERK1/2 in human lung cancer
A549 cells. Biochem Biophys Res Commun. 437:108–113. 2013.
View Article : Google Scholar : PubMed/NCBI
|
80
|
Kong Y, Bai Ps, Sun H and Nan Kj:
Expression of the newly identified gene CAC1 in the hippocampus of
alzheimer's disease patients. J Mol Neurosci. 47:207–218. 2012.
View Article : Google Scholar : PubMed/NCBI
|
81
|
Drögemöller BI, Wright GE, Niehaus DJ,
Emsley R and Warnich L: Next-generation sequencing of
pharmacogenes: A critical analysis focusing on schizophrenia
treatment. Pharmacogenet Genomics. 23:666–674. 2013. View Article : Google Scholar : PubMed/NCBI
|
82
|
Maffioletti E, Valsecchi P, Minelli A,
Magri C, Bonvicini C, Barlati S, Sacchetti E, Vita A and Gennarelli
M: Association study between HTR2A rs6313 polymorphism and early
response to risperidone and olanzapine in schizophrenia patients.
Drug Dev Res. 27:doi:10. 2020.
|
83
|
Hettige NC, de Morae GH, Kennedy JL and De
Luca V: Candidate gene analysis of pharmacodynamic targets for
antipsychotic dosage. Pharmacogenomics. 17:199–208. 2016.
View Article : Google Scholar : PubMed/NCBI
|
84
|
Zai CC, Tiwari AK, Zai GC, Maes MS and
Kennedy JL: New findings in pharmacogenetics of schizophrenia. Curr
Opin Psychiatry. 31:200–212. 2018. View Article : Google Scholar : PubMed/NCBI
|
85
|
Zhou W, Xu Y, Lv Q, Sheng YH, Chen L, Li
M, Shen L, Huai C, Yi Z, Cui D and Qin S: Genetic association of
olanzapine treatment response in Han Chinese schizophrenia
patients. Front Pharmacol. 10:1772019. View Article : Google Scholar : PubMed/NCBI
|
86
|
Ruderfer DM, Charney AW, Readhead B, Kidd
BA, Kähler AK, Kenny PJ, Keiser MJ, Moran JL, Hultman CM, Scott SA,
et al: Polygenic overlap between schizophrenia risk and
antipsychotic response: A genomic medicine approach. Lancet
Psychiatry. 3:350–357. 2016. View Article : Google Scholar : PubMed/NCBI
|
87
|
Gressier F, Porcelli S, Calati R and
Serretti A: Pharmacogenetics of clozapine response and induced
weight gain: A comprehensive review and meta-analysis. Eur
Neuropsychopharmacol. 26:163–185. 2016. View Article : Google Scholar : PubMed/NCBI
|
88
|
Zhang JP and Malhotra AK: Pharmacogenetics
and antipsychotics: Therapeutic efficacy and side effects
prediction. Exp Opin Drug Metab Toxicol. 7:9–37. 2011. View Article : Google Scholar
|
89
|
Sriretnakumar V, Huang E and Müller DJ:
Pharmacogenetics of clozapine treatment response and side-effects
in schizophrenia: An update. Exp Opin Drug Metab Toxicol.
11:1709–1731. 2015. View Article : Google Scholar
|