1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA CAncer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Miller KD, Siegel RL, Lin CC, Mariotto AB,
Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer
treatment and survivorship statistics, 2016. CA Cancer J Clin.
66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Brenner H, Kloor M and Pox CP: Colorectal
cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pothuraju R, Rachagani S, Krishn SR,
Chaudhary S, Nimmakayala RK, Siddiqui JA, Ganguly K, Lakshmanan I,
Cox JL, Mallya K, et al: Molecular implications of MUC5AC-CD44 axis
in colorectal cancer progression and chemoresistance. Mol Cancer.
19:372020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Briggs SD, Bryant SS, Jove R, Sanderson SD
and Smithgall TE: The Ras GTPase-activating protein (GAP) is an SH3
domain-binding protein and substrate for the Src-related tyrosine
kinase, Hck. J Biol Chem. 270:14718–14724. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Atlas R, Behar L, Elliott E and Ginzburg
I: The insulin-like growth factor mRNA binding-protein IMP-1 and
the Ras-regulatory protein G3BP associate with tau mRNA and HuD
protein in differentiated P19 neuronal cells. J Neurochem.
89:613–626. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Taniuchi K, Nishimori I and Hollingsworth
MA: The N-terminal domain of G3BP enhances cell motility and
invasion by posttranscriptional regulation of BART. Mol Cancer Res.
9:856–866. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
French J, Stirling R, Walsh M and Kennedy
HD: The expression of Ras-GTPase activating protein SH3
domain-binding proteins, G3BPs, in human breast cancers. Histochem
J. 34:223–231. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zheng H, Zhan Y, Zhang Y, Liu S, Lu J,
Yang Y, Wen Q and Fan S: Elevated expression of G3BP1 associates
with YB1 and p-AKT and predicts poor prognosis in nonsmall cell
lung cancer patients after surgical resection. Cancer Med.
8:6894–6903. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Winslow S, Leandersson K and Larsson C:
Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in
breast cancer cells. Mol Cancer. 12:1562013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Irvine K, Stirling R, Hume D and Kennedy
D: Rasputin, more promiscuous than ever: A review of G3BP. Int J
Dev Biol. 48:1065–1077. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kociok N, Esser P, Unfried K, Parker F,
Schraermeyer U, Grisanti S, Toqué B and Heimann K: Upregulation of
the RAS-GTPase activating protein (GAP)-binding protein (G3BP) in
proliferating RPE cells. J Cell Biochem. 74:194–201. 1999.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Oi N, Yuan J, Malakhova M, Luo K, Li Y,
Ryu J, Zhang L, Bode AM, Xu Z, Li Y, et al: Resveratrol induces
apoptosis by directly targeting Ras-GTPase-activating protein SH3
domain-binding protein 1. Oncogene. 34:2660–2671. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang H, Ma Y, Zhang S, Liu H, He H, Li N,
Gong Y, Zhao S, Jiang JD and Shao RG: Involvement of Ras
GTPase-activating protein SH3 domain-binding protein 1 in the
epithelial-to-mesenchymal transition-induced metastasis of breast
cancer cells via the Smad signaling pathway. Oncotarget.
6:17039–17053. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Min L, Ruan Y, Shen Z, Jia D, Wang X, Zhao
J, Sun Y and Gu J: Overexpression of Ras-GTPase-activating protein
SH3 domain-binding protein 1 correlates with poor prognosis in
gastric cancer patients. Histopathology. 67:677–688. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Shim JH, Su ZY, Chae JI, Kim DJ, Zhu F, Ma
WY, Bode AM, Yang CS and Dong Z: Epigallocatechin gallate
suppresses lung cancer cell growth through Ras-GTPase-activating
protein SH3 domain-binding protein 1. Cancer Prev Res (Phila).
3:670–679. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guitard E, Parker F, Millon R, Abecassis J
and Tocque B: G3BP is overexpressed in human tumors and promotes S
phase entry. Cancer Lett. 162:213–221. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang H, Zhang S, He H, Zhao W, Chen J and
Shao RG: GAP161 targets and downregulates G3BP to suppress cell
growth and potentiate cisplaitin-mediated cytotoxicity to colon
carcinoma HCT116 cells. Cancer Sci. 103:1848–1856. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang J, Li Q, Xue B and He R: MALAT1
inhibits the Wnt/β-catenin signaling pathway in colon cancer cells
and affects cell proliferation and apoptosis. Bosn J Basic Med Sci.
20:357–364. 2019.
|
20
|
Shiizaki K, Kido K and Mizuta Y: Insight
into the relationship between aryl-hydrocarbon receptor and
β-catenin in human colon cancer cells. PLoS One. 14:e02246132019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim JY, Park G, Krishnan M, Ha E and Chun
KS: Selective Wnt/β-catenin Small-molecule Inhibitor CWP232228
Impairs Tumor Growth of Colon Cancer. Anticancer Res. 39:3661–3667.
2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sebio A, Kahn M and Lenz HJ: The potential
of targeting Wnt/β-catenin in colon cancer. Expert Opin Ther
Targets. 18:611–615. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bikkavilli RK and Malbon CC: Arginine
methylation of G3BP1 in response to Wnt3a regulates β-catenin mRNA.
J Cell Sci. 124:2310–2320. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xin B, He X, Wang J, Cai J, Wei W, Zhang T
and Shen X: Nerve growth factor regulates CD133 function to promote
tumor cell migration and invasion via activating ERK1/2 signaling
in pancreatic cancer. Pancreatology. 16:1005–1014. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Duquet A, Melotti A, Mishra S, Malerba M,
Seth C, Conod A, Ruiz I and Altaba A: A novel genome-wide in vivo
screen for metastatic suppressors in human colon cancer identifies
the positive WNT-TCF pathway modulators TMED3 and SOX12. EMBO Mol
Med. 6:882–901. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dou N, Chen J, Yu S, Gao Y and Li Y: G3BP1
contributes to tumor metastasis via upregulation of Slug expression
in hepatocellular carcinoma. Am J Cancer Res. 6:2641–2650.
2016.PubMed/NCBI
|
28
|
Beheshtizadeh M and Moslemi E: Analysis of
G3BP1 and VEZT expression in gastric cancer and their possible
correlation with tumor clinicopathological Factors. J Gastric
Cancer. 17:43–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tourriere H, Chebli K, Zekri L, Courselaud
B, Blanchard JM, Bertrand E and Tazi J: The RasGAP-associated
endoribonuclease G3BP assembles stress granules. J Cell Biol.
160:823–831. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito
H and Takekawa M: Formation of stress granules inhibits apoptosis
by suppressing stress-responsive MAPK pathways. Nat Cell Biol.
10:1324–1332. 2008. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Barnes CJ, Li F, Mandal M, Yang Z, Sahin
AA and Kumar R: Heregulin induces expression, ATPase activity, and
nuclear localization of G3BP, a Ras signaling component, in human
breast tumors. Cancer Res. 62:1251–1255. 2002.PubMed/NCBI
|
32
|
Gallouzi IE, Parker F, Chebli K, Maurier
F, Labourier E, Barlat I, Capony JP, Tocque B and Tazi J: A novel
phosphorylation-dependent RNase activity of GAP-SH3 binding
protein: A potential link between signal transduction and RNA
stability. Mol Cell Biol. 18:3956–3965. 1998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Soncini C, Berdo I and Draetta G: Ras-GAP
SH3 domain binding protein (G3BP) is a modulator of USP10, a novel
human ubiquitin specific protease. Oncogene. 20:3869–3879. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Huang Y, Wernyj RP, Norton DD, Precht P,
Seminario MC and Wange RL: Modulation of specific protein
expression levels by PTEN: Identification of AKAP121, DHFR, G3BP,
Rap1, and RCC1 as potential targets of PTEN. Oncogene.
24:3819–3829. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim MM, Wiederschain D, Kennedy D, Hansen
E and Yuan ZM: Modulation of p53 and MDM2 activity by novel
interaction with Ras-GAP binding proteins (G3BP). Oncogene.
26:4209–4215. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen G, Zhou T, Li Y, Yu Z and Sun L: p53
target miR-29c-3p suppresses colon cancer cell invasion and
migration through inhibition of PHLDB2. Biochem Biophys Res Commun.
487:90–95. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Somasekharan SP, El-Naggar A, Leprivier G,
Cheng H, Hajee S, Grunewald TG, Zhang F, Ng T, Delattre O,
Evdokimova V, et al: YB-1 regulates stress granule formation and
tumor progression by translationally activating G3BP1. J Cell Biol.
208:913–929. 2015. View Article : Google Scholar : PubMed/NCBI
|