1
|
Mathew B and Lakshminrusimha S: Persistent
pulmonary hypertension in the newborn. Children (Basel).
4:632017.
|
2
|
Rudolph AM and Yuan S: Response of the
pulmonary vasculature to hypoxia and H+ ion
concentration changes. J Clin Invest. 45:399–411. 1966. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tabima DM, Frizzell S and Gladwin MT:
Reactive oxygen and nitrogen species in pulmonary hypertension.
Free Radic Biol Med. 52:1970–1986. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Galiè N, Hoeper MM, Humbert M, Torbicki A,
Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS,
et al: Guidelines for the diagnosis and treatment of pulmonary
hypertension: The task force for the diagnosis and treatment of
pulmonary hypertension of the European society of cardiology (ESC)
and the European respiratory society (ERS), endorsed by the
international society of heart and lung transplantation (ISHLT).
Eur Heart J. 30:2493–2537. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Simonneau G, Gatzoulis MA, Adatia I,
Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar
R, Landzberg M, Machado RF, et al: Updated clinical classification
of pulmonary hypertension. J Am Coll Cardiol. 62:D34–D41. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Rosenkranz S: Pulmonary hypertension 2015:
Current definitions, terminology, and novel treatment options. Clin
Res Cardiol. 104:197–207. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Delaney C and Cornfield DN: Risk factors
for persistent pulmonary hypertension of the newborn. Pulm Circ.
2:15–20. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Storme L, Aubry E, Rakza T, Houeijeh A,
Debarge V, Tourneux P, Deruelle P and Pennaforte T; French
Congenital Diaphragmatic Hernia Study G, : Pathophysiology of
persistent pulmonary hypertension of the newborn: Impact of the
perinatal environment. Arch Cardiovasc Dis. 106:169–177. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu XF, Ma XL, Shen Z, Wu XL, Cheng F and
Du LZ: Epigenetic regulation of the endothelial nitric oxide
synthase gene in persistent pulmonary hypertension of the newborn
rat. J Hypertens. 28:2227–2235. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y, Shi B, Huang L, Wang X, Yu X, Guo B
and Ren W: Suppression of the expression of hypoxia-inducible
factor-1alpha by RNA interference alleviates hypoxia-induced
pulmonary hypertension in adult rats. Int J Mol Med. 38:1786–1794.
2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ambalavanan N, Nicola T, Hagood J, Bulger
A, Serra R, Murphy-Ullrich J, Oparil S and Chen YF: Transforming
growth factor-beta signaling mediates hypoxia-induced pulmonary
arterial remodeling and inhibition of alveolar development in
newborn mouse lung. Am J Physiol Lung Cell Mol Physiol.
295:L86–L95. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Özpelit E, Akdeniz B, Özpelit ME, Tas S,
Bozkurt S, Tertemiz KC, Sevinc C and Badak Ö: Prognostic value of
neutrophil-to-lymphocyte ratio in pulmonary arterial hypertension.
J Int Med Res. 43:661–671. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Seyfarth HJ, Sack U, Gessner C and Wirtz
H: Angiogenin, bFGF and VEGF: angiogenic markers in breath
condensate of patients with pulmonary hypertension. Pneumologie.
69:207–211. 2015.(In German). PubMed/NCBI
|
14
|
Rameh V and Kossaify A: Role of biomarkers
in the diagnosis, risk assessment, and management of pulmonary
hypertension. Biomark Insights. 11:85–89. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Muttukrishna S, Swer M, Suri S, Jamil A,
Calleja-Agius J, Gangooly S, Ludlow H, Jurkovic D and Jauniaux E:
Soluble flt-1 and PlGF: New markers of early pregnancy loss? PLoS
One. 6:e180412011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cohen SS, Powers BR, Lerch-Gaggl A, Teng
RJ and Konduri GG: Impaired cerebral angiogenesis in the fetal lamb
model of persistent pulmonary hypertension. Int J Dev Neurosci.
38:113–118. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu XF, Gu WZ, Wu XL, Li RY and Du LZ:
Fetal pulmonary vascular remodeling in a rat model induced by
hypoxia and indomethacin. J Matern Fetal Neonatal Med. 24:172–182.
2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Haworth SG and Reid L: Persistent fetal
circulation: Newly recognized structural features. J Pediatr.
88:614–620. 1976. View Article : Google Scholar : PubMed/NCBI
|
19
|
Haworth SG: Pulmonary vascular remodeling
in neonatal pulmonary hypertension. State of the art. Chest.
93:133S–138S. 1988. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pluchart H, Khouri C, Blaise S, Roustit M
and Cracowski JL: Targeting the prostacyclin pathway: Beyond
pulmonary arterial hypertension. Trends Pharmacol Sci. 38:512–523.
2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Goto I, Dohi K, Ogihara Y, Okamoto R,
Yamada N, Mitani Y and Ito M: Detrimental impact of vasopressin V2
receptor antagonism in a su5416/hypoxia/normoxia-exposed rat model
of pulmonary arterial hypertension. Circul J. 80:989–997. 2016.
View Article : Google Scholar
|
22
|
Ikeda T, Iwanaga Y, Watanabe H, Morooka H,
Akahoshi Y, Fujiki H and Miyazaki S: Effects of long-term blockade
of vasopressin receptor types 1a and 2 on cardiac and renal damage
in a rat model of hypertensive heart failure. J Cardiovasc
Pharmacol. 66:487–496. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Stayer SA and Liu Y: Pulmonary
hypertension of the newborn. Best Pract Res Clin Anaesthesiol.
24:375–386. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Teng RJ and Wu TJ: Persistent pulmonary
hypertension of the newborn. J Formos Med Assoc. 112:177–184. 2013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Roofthooft MT, Elema A, Bergman KA and
Berger RM: Patient characteristics in persistent pulmonary
hypertension of the newborn. Pulm Med. 2011:8581542011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Niermeyer S: Cardiopulmonary transition in
the high altitude infant. High Alt Med Biol. 4:225–239. 2003.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Niermeyer S: Going to high altitude with a
newborn infant. High Alt Med Biol. 8:117–123. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guidance on the Care of Laboratory
Animals: (2006) No. 398, Ministry of Science and Technology.
2006.
|
29
|
Wang Z, Huang Z, Lu G, Lin L and Ferrari
M: Hypoxia during pregnancy in rats leads to early morphological
changes of atherosclerosis in adult offspring. Am J Physiol Heart
Circ Physiol. 296:H1321–H1328. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Canadian Council on Animal Care. CCAC
guidelines on, . Euthanasia of animals used in science, 2010.
http://www.ccac.ca/Documents/Standards/Guidelines/Euthanasia.pdfFebruary
21–2016
|
31
|
Albert Einstein College of Medicine
Institute for Animal Studies. Recommended Methods of Anesthesia,
Analgesia, and Euthanasia for Laboratory Animal Species. 2014.
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Pifano M, Garona J, Capobianco CS,
Gonzalez N, Alonso DF and Ripoll GV: Peptide agonists of
vasopressin V2 receptor reduce expression of neuroendocrine markers
and tumor growth in human lung and prostate tumor cells. Front
Oncol. 7:112017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ripoll GV, Garona J, Hermo GA, Gomez DE
and Alonso DF: Effects of the synthetic vasopressin analog
desmopressin in a mouse model of colon cancer. Anticancer Res.
30:5049–5054. 2010.PubMed/NCBI
|
35
|
Morooka H, Iwanaga Y, Tamaki Y, Takase T,
Akahoshi Y, Nakano Y, Fujiki H and Miyazaki S: Chronic
administration of oral vasopressin type 2 receptor antagonist
tolvaptan exerts both myocardial and renal protective effects in
rats with hypertensive heart failure. Circ Heart Fail. 5:484–492.
2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yamazaki T, Izumi Y, Nakamura Y, Yamashita
N, Fujiki H, Osada-Oka M, Shiota M, Hanatani A, Shimada K, Iwao H
and Yoshiyama M: Tolvaptan improves left ventricular dysfunction
after myocardial infarction in rats. Circ Heart Fail. 5:794–802.
2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tamura Y, Kimura M, Takei M, Ono T, Kuwana
M, Satoh T, Fukuda K and Humbert M: Oral vasopressin receptor
antagonist tolvaptan in right heart failure due to pulmonary
hypertension. Eur Respir J. 46:283–286. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Joko Y, Ikemura N, Miyata K, Shiraishi Y,
Tanaka H, Yoshida T, Ikegami Y, Fuse J, Sakamoto M and Momiyama Y:
Efficacy of tolvaptan in a patient with right-sided heart failure
and renal dysfunction refractory to diuretic therapy. J Cardiol
Cases. 9:226–229. 2014. View Article : Google Scholar : PubMed/NCBI
|