1
|
Latgé JP: The pathobiology of
Aspergillus fumigatus. Trends Microbiol. 9:382–389. 2001.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ogorman CM: Airborne Aspergillus
fumigatus conidia: A risk factor for aspergillosis. Fungal Biol
Rev. 25:151–157. 2011. View Article : Google Scholar
|
3
|
Croft CA, Culibrk L, Moore MM and Tebbutt
SJ: Interactions of Aspergillus fumigatus Conidia with
airway epithelial cells: A critical review. Front Microbiol.
7:4722016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bassetti M, Garnacho-Montero J, Calandra
T, Kullberg B, Dimopoulos G, Azoulay E, Chakrabarti A, Kett D, Leon
C, Ostrosky-Zeichner L, et al: Intensive care medicine research
agenda on invasive fungal infection in critically ill patients.
Intensive Care Med. 43:1225–1238. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Toor A, Culibrk L, Singhera GK, Moon KM,
Prudova A, Foster LJ, Moore MM, Dorscheid DR and Tebbutt SJ:
Transcriptomic and proteomic host response to Aspergillus
fumigatus conidia in an air-liquid interface model of human
bronchial epithelium. PLoS One. 13:e02096522018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jia X, Chen F, Pan W, Yu R, Tian S, Han G,
Fang H, Wang S, Zhao J, Li X, et al: Gliotoxin promotes
Aspergillus fumigatus internalization into type II human
pneumocyte A549 cells by inducing host phospholipase D activation.
Microbes Infect. 16:491–501. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Paris S, Boisvieux-Ulrich E, Crestani B,
Houcine O, Taramelli D, Lombardi L and Latgé JP: Internalization of
Aspergillus fumigatus conidia by epithelial and endothelial
cells. Infect Immun. 65:1510–1514. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ye F, Zhang H, Yang YX, Hu HD, Sze SK,
Meng W, Qian J, Ren H, Yang BL, Luo MY, et al: Comparative proteome
analysis of 3T3-L1 adipocyte differentiation using iTRAQ-coupled 2D
LC-MS/MS. J Cell Biochem. 112:3002–3014. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vuong NQ, Goegan P, Mohottalage S, Breznan
D, Ariganello M, Williams A, Elisma F, Karthikeyan S, Vincent R and
Kumarathasan P: Proteomic changes in human lung epithelial cells
(A549) in response to carbon black and titanium dioxide exposures.
J Proteomics. 149:53–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
She X, Zhang P, Gao Y, Zhang L, Wang Q,
Chen H, Calderone R, Liu W and Li D: A mitochondrial proteomics
view of complex I deficiency in Candida albicans.
Mitochondrion. 38:48–57. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pizzatti L, Binato R, Cofre J, Gomes BE,
Dobbin J, Haussmann ME, D'Azambuja D, Bouzas LF and Abdelhay E:
SUZ12 is a candidate target of the non-canonical WNT pathway in the
progression of chronic myeloid leukemia. Genes Chromosomes Cancer.
49:107–118. 2010.PubMed/NCBI
|
12
|
Zhang M, Cheng ST, Wang HY, Wu JH, Luo YM,
Wang Q, Wang FX and Xia GX: iTRAQ-based proteomic analysis of
defence responses triggered by the necrotrophic pathogen
Rhizoctonia solani in cotton. J Proteomics. 152:226–235.
2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Li W, Cohen A, Sun Y, Squires J, Braas D,
Graeber TG, Du L, Li G, Li Z, Xu X, et al: The role of CD44 in
glucose metabolism in prostatic small cell neuroendocrine
carcinoma. Mol Cancer Res. 14:344–353. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bao Z, Han X, Chen F, Jia X, Zhao J, Zhang
C, Yong C, Tian S, Zhou X and Han L: Evidence for the involvement
of cofilin in Aspergillus fumigatus internalization into
type II alveolar epithelial cells. BMC Microbiol. 15:1612015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Seddigh P, Bracht T, Molinier-Frenkel V,
Castellano F, Kniemeyer O, Schuster M, Weski J, Hasenberg A, Kraus
A, Poschet G, et al: Quantitative analysis of proteome modulations
in alveolar epithelial type II cells in response to pulmonary
Aspergillus fumigatus Infection. Mol Cell Proteomics.
16:2184–2198. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rabinovitch M: Professional and
non-professional phagocytes: An introduction. Trends Cell Biol.
5:85–87. 1995. View Article : Google Scholar : PubMed/NCBI
|
19
|
Crapo JD, Barry BE, Gehr P, Bachofen M and
Weibel ER: Cell number and cell characteristics of the normal human
lung. Am Rev Respir Dis. 126:332–337. 1982.PubMed/NCBI
|
20
|
Escobar N, Ordonez SR, Wosten HA, Haas PJ,
de Cock H and Haagsman HP: Hide, keep quiet, and keep low:
Properties that make Aspergillus fumigatus a successful lung
pathogen. Front Microbiol. 7:4382016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen F, Zhang C, Jia X, Wang S, Wang J,
Chen Y, Zhao J, Tian S, Han X and Han L: Transcriptome profiles of
human lung epithelial cells A549 interacting with Aspergillus
fumigatus by RNA-Seq. PLoS One. 10:e01357202015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Srivastava M, Bencurova E, Gupta SK, Weiss
E, Loffler J and Dandekar T: Aspergillus fumigatus
challenged by human dendritic cells: Metabolic and regulatory
pathway responses testify a tight battle. Front Cell Infect
Microbiol. 9:1682019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen L, Xing C, Ma G, Luo J, Su W, Li M,
Shi Q and He H: N-myc downstream-regulated gene 1 facilitates
influenza A virus replication by suppressing canonical NF-kappaB
signaling. Virus Res. 252:22–28. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Melotte V, Qu X, Ongenaert M, van
Criekinge W, de Bruïne AP, Baldwin HS and van Engeland M: The N-myc
downstream regulated gene (NDRG) family: Diverse functions,
multiple applications. FASEB J. 24:4153–4166. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Schweitzer CJ, Zhang F, Boyer A, Valdez K,
Cam M and Liang TJ: N-Myc downstream-regulated gene 1 restricts
hepatitis C virus propagation by regulating lipid droplet
biogenesis and viral assembly. J Virol. 92:e01166–1792.
2018.PubMed/NCBI
|
26
|
Gon Y, Maruoka S, Kishi H, Kozu Y,
Kazumichi K, Nomura Y, Takeshita I, Oshima T and Hashimoto S: NDRG1
is important to maintain the integrity of airway epithelial barrier
through claudin-9 expression. Cell Biol Int. 41:716–725. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Ouhtit A, Rizeq B, Saleh HA, Rahman MM and
Zayed H: Novel CD44-downstream signaling pathways mediating breast
tumor invasion. Int J Biol Sci. 14:1782–1790. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Naor D, Nedvetzki S, Golan I, Melnik L and
Faitelson Y: CD44 in cancer. Crit Rev Clin Lab Sci. 39:527–579.
2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Babasola O, Rees-Milton KJ, Bebe S, Wang J
and Anastassiades TP: Chemically modified N-acylated hyaluronan
fragments modulate proinflammatory cytokine production by
stimulated human macrophages. J Biol Chem. 289:24779–24791. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Fu Q, Wei Z, Xiao P, Chen Y and Liu X:
CD44 enhances macrophage phagocytosis and plays a protective role
in Streptococcus equi subsp. zooepidemicus infection. Vet
Microbiol. 198:121–126. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
van der Windt GJ, Florquin S, de Vos AF,
van't Veer C, Queiroz KC, Liang J, Jiang D, Noble PW and van der
Poll T: CD44 deficiency is associated with increased bacterial
clearance but enhanced lung inflammation during Gram-negative
pneumonia. Am J Pathol. 177:2483–2494. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jong A, Wu CH, Gonzales-Gomez I,
Kwon-Chung KJ, Chang YC, Tseng HK, Cho WL and Huang SH: Hyaluronic
acid receptor CD44 deficiency is associated with decreased
Cryptococcus neoformans brain infection. J Biol Chem.
287:15298–15306. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chang YC, Stins MF, McCaffery MJ, Miller
GF, Pare DR, Dam T, Paul-Satyaseela M, Kim KS and Kwon-Chung KJ:
Cryptococcal yeast cells invade the central nervous system via
transcellular penetration of the blood-brain barrier. Infect Immun.
72:4985–4995. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Qadri M, Almadani S, Jay GD and Elsaid KA:
Role of CD44 in regulating TLR2 activation of human macrophages and
downstream expression of proinflammatory cytokines. J Immun.
200:758–767. 2018. View Article : Google Scholar : PubMed/NCBI
|