1
|
Zerna C, Thomalla G, Campbell BCV, Rha JH
and Hill MD: Current practice and future directions in the
diagnosis and acute treatment of ischaemic stroke. Lancet.
392:1247–1256. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang W, Jiang B, Sun H, Ru X, Sun D, Wang
L, Wang L, Jiang Y, Li Y, Wang Y, et al: Prevalence, incidence, and
mortality of stroke in China clinical perspective: Results from a
nationwide population-based survey of 480687 adults. Circulation.
135:759–771. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
China's Health and Family Planning
Statistical Yearbook. National Health and Family Planning
Commission of the People's Republic of China. Peking: Peking Union
Medical College Press; 2016
|
4
|
Jean WC, Spellman SR, Nussbaum ES and Low
WC: Reperfusion injury after focal cerebral ischemia: The role
inflammation and the the rapeutic horizon. Neurosurgery.
43:1382–1396. 1998. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wu M, Yiang GT, Liao WT, Tsai AP, Cheng
YL, Cheng PW, Li CY and Li CJ: Current mechanistic concepts in
ischemia and reperfusion injury. Cell Physiol Biochem.
46:1650–1667. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yang Q, Huang Q, Hu Z and Tang X:
Potential neuroprotective treatment of stroke: Targeting
excitotoxicity, oxidative stress, and inflammation. Front Neurosci.
13:10362019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nakka VP, Gusain A, Mehta SL and Raghubir
R: Molecular mechanisms of apoptosis in cerebral ischemia: Multiple
neuroprotective opportunities. Mol Neurobiol. 37:7–38. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Candelario-Jalil E: Injury and repair
mechanisms in ischemic stroke: Considerations for the development
of novel neurotherapeutics. Curr Opin Investig Drugs. 10:644–654.
2009.PubMed/NCBI
|
9
|
Huang HL, Fang LW, Lu SP, Chou CK, Luh TY
and Lai MZ: DNA-damaging reagents induce apoptosis through reactive
oxygen species-dependent Fas aggregation. Oncogene. 22:8168–8177.
2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin TC, Chen YR, Kensicki E, Li AYJ, Kong
M, Li Y, Mohney RP, Shen HM, Stiles B, Mizushima N, et al:
Autophagy: Resetting glutamine-dependent metabolism and oxygen
consumption. Autophagy. 8:1477–1493. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hao Y, Liu J, Wang Z, Yu LL and Wang J:
Piceatannol protects human retinal pigment epithelial cells against
hydrogen peroxide induced oxidative stress and apoptosis through
modulating PI3K/Akt signaling pathway. Nutrients. 11:15152019.
View Article : Google Scholar
|
12
|
Boccellino M, Donniacuo M, Bruno F,
Rinaldi B, Quagliuolo L, Ambruosi M, Pace S, De Rosa M, Olgaç A,
Banoglu E, et al: Protective effect of piceatannol and bioactive
stilbene derivatives against hypoxia-induced toxicity in H9c2
cardiomyocytes and structural elucidation as 5-LOX inhibitors. Eur
J Med Chem. 180:637–647. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li H, Shi Y, Wang X, Li P, Zhang S, Wu T,
Yan Y, Zhan Y, Ren Y, Rong X, et al: Piceatannol alleviates
inflammation and oxidative stress via modulation of the Nrf2/HO-1
and NF-κB pathways in diabetic cardiomyopathy. Chem Biol Interact.
310:1087542019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang W, Yang R, Yao H, Wu Y, Pan W and Jia
AQ: Inhibiting the formation of advanced glycation end-products by
three stilbenes and the identification of their adducts. Food Chem.
295:10–15. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Moon I, Damodar K, Kim JK, Ryoo S and Jun
JG: Synthesis, anti-inflammatory, and arginase inhibitory activity
of piceatannol and its analogs. Bull Korean Chem Soc. 38:342–349.
2017. View Article : Google Scholar
|
16
|
Liu J, Zhou J, Wu Z, Wang X, Liu L and Yao
C: Cyanidin 3-O-β-glucoside ameliorates ethanol-induced acute liver
injury by attenuating oxidative stress and apoptosis: The role of
SIRT 1/FOXO 1 signaling. Alcohol Clin Exp Res. 40:457–466. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yan X, Yu A, Zheng H, Wang S, He Y and
Wang L: Calycosin-7-O-β-D-glucoside attenuates OGD/R-induced damage
by preventing oxidative stress and neuronal apoptosis via the
SIRT1/FOXO1/PGC-1α pathway in HT22 cells. Neural Plast.
2019:87980692019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Llarena M, Andrade F, Hasnaoui M, Portillo
MP, Pérez-Matute P, Arbones-Mainar JM, Hijona E, Villanueva-Millán
MJ, Aguirre L, Carpéné C and Aldámiz-Echevarría L: Potential
renoprotective effects of piceatannol in ameliorating the
early-stage nephropathy associated with obesity in obese Zucker
rats. J Physiol Biochem. 72:555–566. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee HJ, Kang MG, Cha HY, Kim YM, Lim Y and
Yang SJ: Effects of piceatannol and resveratrol on sirtuins and
hepatic inflammation in high-fat diet-fed mice. J Med Food.
22:833–840. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fu Z, Yang J, Wei Y and Li J: Effects of
piceatannol and pterostilbene against β-amyloid-induced apoptosis
on the PI3K/Akt/Bad signaling pathway in PC12 cells. Food Funct.
7:1014–1023. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wong CHY, Jenne CN, Lee WY, Léger C and
Kubes P: Functional innervation of hepatic iNKT cells is
immunosuppressive following stroke. Science. 334:101–105. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Longa EZ, Weinstein PR, Carlson S and
Cummins R: Reversible middle cerebral artery occlusion without
craniectomy in rats. Stroke. 20:84–91. 1989. View Article : Google Scholar : PubMed/NCBI
|
23
|
Paxinos G and Watson C: The Rat Brain in
Stereotaxic Coordinates (Deluxe Edition). (4th). Rat Brain in
Stereotaxic Coordinates. p2561998.
|
24
|
Xiong Y, Qu C, Mahmood A, Liu Z, Ning R,
Li Y, Kaplan DL, Schallert T and Chopp M: Delayed transplantation
of human marrow stromal cell-seeded scaffolds increases
transcallosal neural fiber length, angiogenesis, and hippocampal
neuronal survival and improves functional outcome after traumatic
brain injury in rats. Brain Res. 1263:183–191. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Aebi H: Catalase in vitro. Methods
Enzymol. 105:121–126. 1984. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hafeman DG, Sunde RA and Hoekstra WG:
Effect of dietary selenium on erythrocyte and liver glutathione
peroxidase in the rat. J Nutr. 104:580–587. 1974. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hissin PJ and Hilf R: A fluorometric
method for determination of oxidized and reduced glutathione in
tissues. Anal Biochem. 74:214–226. 1976. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang W, Cui Y, Gao J, Li R, Jiang X, Tian
Y, Wang K and Cui J: Recombinant osteopontin improves neurological
functional recovery and protects against apoptosis via
PI3K/Akt/GSK-3β pathway following intracerebral hemorrhage. Med Sci
Monit. 24:1588–1596. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kim HJ, Martemyanov KA and Thayer SA:
Human immunodeficiency virus protein Tat induces synapse loss via a
reversible process that is distinct from cell death. J Neurosci.
28:12604–12613. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhi G, Hai-Ping Z, Yu-Min L and Xun-Ming
J: The behavioral testing in mice after cerebral ischemia. Chin J
Comp Med. 22:68–72. 2012.
|
32
|
Onwuekwe IO and Ezeala-Adikaibe B:
Ischemic stroke and neuroprotection. Ann Med Health Sci Res.
2:186–190. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Rodrigo R, Fernández-Gajardo R, Gutiérrez
R, Matamala JM, Carrasco R, Miranda-Merchak A and Feuerhake W:
Oxidative stress and pathophysiology of ischemic stroke: Novel
therapeutic opportunities. CNS Neurol Disord Drug Targets.
12:698–714. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Matsui Y, Sugiyama K, Kamei M, Takahashi
T, Suzuki T, Katagata Y and Ito T: Extract of passion fruit
(Passiflora edulis) seed containing high amounts of
piceatannol inhibits melanogenesis and promotes collagen synthesis.
J Agric Food Chem. 58:11112–11118. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Banik K, Ranaware AM, Harsha C, Nitesh T,
Girisa S, Deshpande V, Fan L, Nalawade SP, Sethi G and Kunnumakkara
AB: Piceatannol: A natural stilbene for the prevention and
treatment of cancer. Pharmacol Res. 153:1046352020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wen J, Lin H, Zhao M, Tao L, Yang Y, Xu X,
Jia A, Zhang J and Weng D: Piceatannol attenuates
D-GalN/LPS-induced hepatoxicity in mice: Involvement of ER stress,
inflammation and oxidative stress. Int Immunopharmacol. 64:131–139.
2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang Y, Zhang LH, Chen X, Zhang N and Li
G: Piceatannol attenuates behavioral disorder and neurological
deficits in aging mice via activating the Nrf2 pathway. Food Funct.
9:371–378. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kinoshita Y, Kawakami S, Yanae K, Sano S,
Uchida H, Inagaki H and Ito T: Effect of long-term piceatannol
treatment on eNOS levels in cultured endothelial cells. Biochem
Biophys Res Commun. 430:1164–1168. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kiliç V: Piceatannol mediated modulation
of oxidative stress and regeneration in the liver of endotoxemic
mice. J Med Food. 22:594–601. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Piotrowska H, Kucinska M and Murias M:
Biological activity of piceatannol: Leaving the shadow of
resveratrol. Mutat Res. 750:60–82. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yokozawa T and Kim YJ: Piceatannol
inhibits melanogenesis by its antioxidative actions. Biol Pharm
Bull. 30:2007–2011. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kim HJ, Lee KW and Lee HJ: Protective
effects of piceatannol against beta-amyloid-induced neuronal cell
death. Ann N Y Acad Sci. 1095:473–482. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Song H, Jung JI, Cho HJ, Her S, Kwon SH,
Yu R, Kang YH, Lee KW and Park JHY: Inhibition of tumor progression
by oral piceatannol in mouse 4T1 mammary cancer is associated with
decreased angiogenesis and macrophage infiltration. J Nutr Biochem.
26:1368–1378. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wen H, Fu Z, Wei Y, Zhang X, Ma L, Gu L
and Li J: Antioxidant activity and neuroprotective activity of
stilbenoids in rat primary cortex neurons via the PI3K/Akt
signalling pathway. Molecules. 23:23282018. View Article : Google Scholar
|
45
|
Hong KS, Park JI, Kim MJ, Kim HB, Lee JW,
Dao TT, Oh WK, Kang CD and Kim SH: Involvement of SIRT1 in hypoxic
down-regulation of c-Myc and β-catenin and hypoxic preconditioning
effect of polyphenols. Toxicol Appl Pharmacol. 259:210–218. 2012.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Jiang Y, Luo W, Wang B, Wang X, Gong P and
Xiong Y: Resveratrol promotes osteogenesis via activating
SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci. 246:1174222020.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Kitada M, Ogura Y, Maruki-Uchida H, Sai M,
Suzuki T, Kanasaki K, Hara Y, Seto H, Kuroshima Y, Monno I and Koya
D: The effect of piceatannol from passion fruit (Passiflora
edulis) seeds on metabolic health in humans. Nutrients.
9:11422017. View Article : Google Scholar
|
48
|
Arai D, Kataoka R, Otsuka S, Kawamura M,
Maruki-Uchida H, Sai M, Ito T and Nakao Y: Piceatannol is superior
to resveratrol in promoting neural stem cell differentiation into
astrocytes. Food Funct. 7:4432–4441. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Suzuki Y, Nakano Y, Mishiro K, Takagi T,
Tsuruma K, Nakamura M, Yoshimura S, Shimazawa M and Hara H:
Involvement of Mincle and Syk in the changes to innate immunity
after ischemic stroke. Sci Rep. 3:31772013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ye XC, Hao Q, Ma WJ, Zhao QC, Wang WW, Yin
HH, Zhang T, Wang M, Zan K, Yang XX, et al: Dectin-1/Syk signaling
triggers neuroinflammation after ischemic stroke in mice. J
Neuroinflammation. 17:172020. View Article : Google Scholar : PubMed/NCBI
|