1
|
Feng X and McDonald JM: Disorders of bone
remodeling. Annu Rev Pathol. 6:121–145. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mulari MT, Qu Q, Härkönen PL and Väänänen
HK: Osteoblast-like cells complete osteoclastic bone resorption and
form new mineralized bone matrix in vitro. Calcif Tissue Int.
75:253–261. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bennett CN, Longo KA, Wright WS, Suva LJ,
Lane TF, Hankenson KD and MacDougald OA: Regulation of
osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA.
102:3324–3329. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen P, Li Z and Hu Y: Prevalence of
osteoporosis in China: A meta-analysis and systematic review. BMC
Public Health. 16:10392016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Phan TC, Xu J and Zheng MH: Interaction
between osteoblast and osteoclast: Impact in bone disease. Histol
Histopathol. 19:1325–1344. 2004.PubMed/NCBI
|
6
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bruder SP, Kurth AA, Shea M, Hayes WC,
Jaiswal N and Kadiyala S: Bone regeneration by implantation of
purified, culture-expanded human mesenchymal stem cells. J Orthop
Res. 16:155–162. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang W, Yang GJ, Wu SX, Li DQ, Xu YB, Ma
CH, Wang JL and Chen WW: The guiding role of bone metabolism test
in osteoporosis treatment. Am J Clin Exp Immunol. 7:40–49.
2018.PubMed/NCBI
|
9
|
Xiong L, Jung JU, Wu H, Xia WF, Pan JX,
Shen C, Mei L and Xiong WC: Lrp4 in osteoblasts suppresses bone
formation and promotes osteoclastogenesis and bone resorption. Proc
Natl Acad Sci USA. 112:3487–3492. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Quinn JJ and Chang HY: Unique features of
long non-coding RNA biogenesis and function. Nat Rev Genet.
17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Iyer MK, Niknafs YS, Malik R, Singhal U,
Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et
al: The landscape of long noncoding RNAs in the human
transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Josefs T and Boon RA: The long non-coding
road to atherosclerosis. Curr Atheroscler Rep. 22:552020.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ghafouri-Fard S, Eghtedarian R and Taheri
M: The crucial role of non-coding RNAs in the pathophysiology of
inflammatory bowel disease. Biomed Pharmacother. 129:1105072020.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen W, Yang J, Fang H, Li L and Sun J:
Relevance function of linc-ROR in the pathogenesis of cancer. Front
Cell Dev Biol. 8:6962020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Guttman M, Donaghey J, Carey BW, Garber M,
Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al:
lincRNAs act in the circuitry controlling pluripotency and
differentiation. Nature. 477:295–300. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang CG, Hu YH, Su SL and Zhong D: lncRNA
DANCR and miR-320a suppressed osteogenic differentiation in
osteoporosis by directly inhibiting the Wnt/β-catenin signaling
pathway. Exp Mol Med. 52:1310–1325. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma J, Zhang X, Zhang H and Chen H: lncRNA
MEG3 suppresses the progression of ankylosis spondylitis by
regulating the Let-7i/SOST axis. Front Mol Biosci. 7:1732020.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zheng S, Wang YB, Yang YL, Chen BP, Wang
CX, Li RH and Huang D: lncRNA MALAT1 inhibits osteogenic
differentiation of mesenchymal stem cells in osteoporosis rats
through MAPK signaling pathway. Eur Rev Med Pharmacol Sci.
23:4609–4617. 2019.PubMed/NCBI
|
19
|
Zhuang W, Ge X, Yang S, Huang M, Zhuang W,
Chen P, Zhang X, Fu J, Qu J and Li B: Upregulation of lncRNA MEG3
promotes osteogenic differentiation of mesenchymal stem cells from
multiple myeloma patients by targeting BMP4 transcription. Stem
Cells. 33:1985–1997. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wei B, Wei W, Zhao B, Guo X and Liu S:
Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate
osteogenic differentiation and proliferation in non-traumatic
osteonecrosis of femoral head. PLoS One. 12:e01690972017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Song H, Liu Y, Jin X, Liu Y, Yang Y, Li L,
Wang X and Li G: Long non-coding RNA LINC01535 promotes cervical
cancer progression via targeting the miR-214/EZH2 feedback loop. J
Cell Mol Med. 23:6098–6111. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Carthew RW and Sontheimer EJ: Origins and
mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Rana TM: Illuminating the silence:
Understanding the structure and function of small RNAs. Nat Rev Mol
Cell Biol. 8:23–36. 2007. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Garzon R, Calin GA and Croce CM: MicroRNAs
in cancer. Annu Rev Med. 60:167–179. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
An JH, Ohn JH, Song JA, Yang JY, Park H,
Choi HJ, Kim SW, Kim SY, Park WY and Shin CS: Changes of microRNA
profile and microRNA-mRNA regulatory network in bones of
ovariectomized mice. J Bone Miner Res. 29:644–656. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang H, Hua Y, Jiang Z, Yue J, Shi M,
Zhen X, Zhang X, Yang L, Zhou R and Wu S: Cancer-associated
fibroblast-promoted lncRNA DNM3OS confers radioresistance by
regulating DNA damage response in esophageal squamous cell
carcinoma. Clin Cancer Res. 25:1989–2000. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ,
Tae G, Noh I, Lee SH, Park Y and Sun K: Bone regeneration using
hyaluronic acid-based hydrogel with bone morphogenic protein-2 and
human mesenchymal stem cells. Biomaterials. 28:1830–1837. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Shu B, Zhang M, Xie R, Wang M, Jin H, Hou
W, Tang D, Harris SE, Mishina Y, O'Keefe RJ, et al: BMP2, but not
BMP4, is crucial for chondrocyte proliferation and maturation
during endochondral bone development. J Cell Sci. 124:3428–3440.
2001. View Article : Google Scholar
|
29
|
Zhang N, Hu X, He S, Ding W, Wang F, Zhao
Y and Huang Z: lncRNA MSC-AS1 promotes osteogenic differentiation
and alleviates osteoporosis through sponging microRNA-140-5p to
upregulate BMP2. Biochem Biophys Res Commun. 519:790–796. 2019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Qiao L, Li CG and Liu D: CircRNA_0048211
protects postmenopausal osteoporosis through targeting miRNA-93-5p
to regulate BMP2. Eur Rev Med Pharmacol Sci. 24:3459–3466.
2020.PubMed/NCBI
|
31
|
Wang CG, Liao Z, Xiao H, Liu H, Hu YH,
Liao QD and Zhong D: lncRNA KCNQ1OT1 promoted BMP2 expression to
regulate osteogenic differentiation by sponging miRNA-214. Exp Mol
Pathol. 107:77–84. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Ahmed SF and Elmantaser M: Secondary
osteoporosis. Endocr Dev. 16:170–190. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Teitelbaum SL: Bone resorption by
osteoclasts. Science. 289:1504–1508. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li WF, Hou SX, Yu B, Li MM, Férec C and
Chen JM: Genetics of osteoporosis: Accelerating pace in gene
identification and validation. Hum Genet. 127:249–285. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Tu KN, Lie JD, Wan CKV, Cameron M, Austel
AG, Nguyen JK, Van K and Hyun D: Osteoporosis: A review of
treatment options. P T. 43:92–104. 2018.PubMed/NCBI
|
37
|
Adler RA: Osteoporosis treatment:
Complexities and challenges. J Endocrinol Invest. 39:719–720. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Clarke B: Normal bone anatomy and
physiology. Clin J Am Soc Nephrol. 3 (Suppl 3):S131–S139. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Liang C, Zhao T, Li H, He F, Zhao X, Zhang
Y, Chu X, Hua C, Qu Y, Duan Y, et al: Long non-coding RNA ITIH4-AS1
accelerates the proliferation and metastasis of colorectal cancer
by activating JAK/STAT3 signaling. Mol Ther Nucleic Acids.
18:183–193. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li FP, Ling DQ and Gao LY: Long noncoding
RNA Chaer mediated Polycomb Repressor Complex 2 (PRC2) activity to
promote atherosclerosis through mTOR signaling. Eur Rev Med
Pharmacol Sci. 23:7639–7648. 2019.PubMed/NCBI
|
41
|
Mei B, Wang Y, Ye W, Huang H, Zhou Q, Chen
Y, Niu Y, Zhang M and Huang Q: lncRNA ZBTB40-IT1 modulated by
osteoporosis GWAS risk SNPs suppresses osteogenesis. Hum Genet.
138:151–166. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shen JJ, Zhang CH, Chen ZW, Wang ZX, Yang
DC, Zhang FL and Feng KH: lncRNA HOTAIR inhibited osteogenic
differentiation of BMSCs by regulating Wnt/β-catenin pathway. Eur
Rev Med Pharmacol Sci. 23:7232–7246. 2019.PubMed/NCBI
|
43
|
Zhang RF, Liu JW, Yu SP, Sun D, Wang XH,
Fu JS and Xie Z: lncRNA UCA1 affects osteoblast proliferation and
differentiation by regulating BMP-2 expression. Eur Rev Med
Pharmacol Sci. 23:6774–6782. 2019.PubMed/NCBI
|
44
|
Cai N, Li C and Wang F: Silencing of
lncRNA-ANCR promotes the osteogenesis of osteoblast cells in
postmenopausal osteoporosis via targeting EZH2 and RUNX2. Yonsei
Med J. 60:751–759. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen X, Yang L, Ge D, Wang W, Yin Z, Yan
J, Cao X, Jiang C, Zheng S and Liang B: Long non-coding RNA XIST
promotes osteoporosis through inhibiting bone marrow mesenchymal
stem cell differentiation. Exp Ther Med. 17:803–811.
2019.PubMed/NCBI
|
46
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The rosetta stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sun F, Liang W, Tang K, Hong M and Qian J:
Profiling the lncRNA-miRNA-mRNA ceRNA network to reveal potential
crosstalk between inflammatory bowel disease and colorectal cancer.
PeerJ. 7:e74512019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhou RS, Zhang EX, Sun QF, Ye ZJ, Liu JW,
Zhou DH and Tang Y: Integrated analysis of lncRNA-miRNA-mRNA ceRNA
network in squamous cell carcinoma of tongue. BMC Cancer.
19:7792019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang G, Wang X and Jin Y:
LINC01410/miR-3619-5p/FOXM1 feedback loop regulates papillary
thyroid carcinoma cell proliferation and apoptosis. Cancer Biother
Radiopharm. 34:572–580. 2019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu Z, Kang Z, Dai Y, Zheng H and Wang Y:
Long noncoding RNA LINC00342 promotes growth of infantile
hemangioma by sponging miR-3619-5p from HDGF. Am J Physiol Heart
Circ Physiol. 317:H830–H839. 2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yan G, Su Y, Ma Z, Yu L and Chen N: Long
noncoding RNA LINC00202 promotes tumor progression by sponging
miR-3619-5p in retinoblastoma. Cell Struct Funct. 44:51–60. 2019.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Jiang X, Zhang Z, Peng T, Wang G, Xu Q and
Li G: miR-204 inhibits the osteogenic differentiation of
mesenchymal stem cells by targeting bone morphogenetic protein 2.
Mol Med Rep. 21:43–50. 2020.PubMed/NCBI
|
53
|
Zhang Y, Wei QS, Ding WB, Zhang LL, Wang
HC, Zhu YJ, He W, Chai YN and Liu YW: Increased microRNA-93-5p
inhibits osteogenic differentiation by targeting bone morphogenetic
protein-2. PLoS One. 12:e01826782017. View Article : Google Scholar : PubMed/NCBI
|