1
|
Needham DM, Wozniak AW, Hough CL, Morris
PE, Dinglas VD, Jackson JC, Mendez-Tellez PA, Shanholtz C, Ely EW,
Colantuoni E, et al: Risk factors for physical impairment after
acute lung injury in a national, multicenter study. Am J Respir
Crit Care Med. 189:1214–1224. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pan C, Liu L, Xie JF and Qiu HB: Acute
respiratory distress syndrome: Challenge for diagnosis and therapy.
Chin Med J (Engl). 131:1220–1224. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pattarayan D, Thimmulappa RK, Ravikumar V
and Rajasekaran S: Diagnostic Potential of extracellular microRNA
in respiratory diseases. Clin Rev Allergy Immunol. 54:480–492.
2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang Y, Liu D, Xi Y, Li J and Liu B:
Upregulation of miRNA-140-5p inhibits inflammatory cytokines in
acute lung injury through the MyD88/NF-κB signaling pathway by
targeting TLR4. Exp Ther Med. 16:3913–3920. 2018.PubMed/NCBI
|
6
|
Xie W, Lu Q, Wang K, Lu J, Gu X, Zhu D,
Liu F and Guo Z: miR-34b-5p inhibition attenuates lung inflammation
and apoptosis in an LPS-induced acute lung injury mouse model by
targeting progranulin. J Cell Physiol. 233:6615–6631. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Bradham DM, Igarashi A, Potter RL and
Grotendorst GR: Connective tissue growth factor: A cysteine-rich
mitogen secreted by human vascular endothelial cells is related to
the SRC-induced immediate early gene product CEF-10. J Cell Biol.
114:1285–1294. 1991. View Article : Google Scholar : PubMed/NCBI
|
8
|
Blom IE, Goldschmeding R and Leask A: Gene
regulation of connective tissue growth factor: New targets for
antifibrotic therapy? Matrix Biol. 21:473–482. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Alapati D, Rong M, Chen S, Hehre D,
Rodriguez MM, Lipson KE and Wu S: Connective tissue growth factor
antibody therapy attenuates hyperoxia-induced lung injury in
neonatal rats. Am J Respir Cell Mol Biol. 45:1169–1177. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Guo H, Ji F, Liu B, Chen X, He J and Gong
J: Peiminine ameliorates bleomycin-induced acute lung injury in
rats. Mol Med Rep. 7:1103–1110. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou T, Yu Q, Lin H, Wang Z, Fu G, Lei L,
Shi Y, Zhang L, Qin L and Liu Y: The Role of CTGF in inflammatory
responses induced by silica particles in human bronchial epithelial
cells. Lung. 197:783–791. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang H, Li W, Zhang Y, Li M, Gao Y, Lao C
and Shi B: Regulatory role of miR-18a to CCN2 by TGF-β1 signaling
pathway in pulmonary injury induced by nano-SiO2.
Environ Sci Pollut Res Int. 25:867–876. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Qi D, He J, Wang D, Deng W, Zhao Y, Ye Y
and Feng L: 17β-estradiol suppresses lipopolysaccharide-induced
acute lung injury through PI3K/Akt/SGK1 mediated up-regulation of
epithelial sodium channel (ENaC) in vivo and in vitro. Respir Res.
15:1592014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:e050052015. View Article : Google Scholar
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Leung WS, Yang ML, Lee SS, Kuo CW, Ho YC,
Huang-Liu R, Lin HW and Kuan YH: Protective effect of zerumbone
reduces lipopolysaccharide-induced acute lung injury via
antioxidative enzymes and Nrf2/HO-1 pathway. Int Immunopharmacol.
46:194–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Q and Xiao L: Isochlorogenic acid A
attenuates acute lung injury induced by LPS via Nf-κB/NLRP3
signaling pathway. Am J Transl Res. 11:7018–7026. 2019.PubMed/NCBI
|
18
|
Guo H, Ingolia NT, Weissman JS and Bartel
DP: Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li W, Qiu X, Jiang H, Han Y, Wei D and Liu
J: Downregulation of miR-181a protects mice from LPS-induced acute
lung injury by targeting Bcl-2. Biomed Pharmacother. 84:1375–1382.
2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
You Q, Wang J, Jia D, Jiang L, Chang Y and
Li W: MiR-802 alleviates lipopolysaccharide-induced acute lung
injury by targeting Peli2. Inflamm Res. 69:75–85. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Meng L, Cao H, Wan C and Jiang L:
MiR-539-5p alleviates sepsis-induced acute lung injury by targeting
ROCK1. Folia Histochem Cytobiol. 57:168–178. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wei R, Zhang L, Hu W, Wu J and Zhang W:
Long non-coding RNA AK038897 aggravates cerebral
ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to
target DAPK1. Exp Neurol. 314:100–110. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xing X, Guo S, Zhang G, Liu Y, Bi S, Wang
X and Lu Q: miR-26a-5p protects against myocardial
ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT
signaling pathway. Braz J Med Biol Res. 53:e91062020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cox R Jr, Phillips O, Fukumoto J, Fukumoto
I, Parthasarathy PT, Arias S, Cho Y, Lockey RF and Kolliputi N:
Enhanced resolution of hyperoxic acute lung injury as a result of
aspirin triggered resolvin D1 treatment. Am J Respir Cell Mol Biol.
53:422–435. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu F, Zhang W, Yang F, Feng T, Zhou M, Yu
Y, Yu X, Zhao W, Yi F, Tang W and Lu Y: Interleukin-6-stimulated
progranulin expression contributes to the malignancy of
hepatocellular carcinoma cells by activating mTOR signaling. Sci
Rep. 6:212602016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ganter MT, Roux J, Miyazawa B, Howard M,
Frank JA, Su G, Sheppard D, Violette SM, Weinreb PH, Horan GS, et
al: Interleukin-1beta causes acute lung injury via alphavbeta5 and
alphavbeta6 integrin-dependent mechanisms. Circ Res. 102:804–812.
2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lv H, Liu Q, Wen Z, Feng H, Deng X and Ci
X: Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute
lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox
Biol. 12:311–324. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ju M, Liu B, He H, Gu Z, Liu Y, Su Y, Zhu
D, Cang J and Luo Z: MicroRNA-27a alleviates LPS-induced acute lung
injury in mice via inhibiting in flammation and apoptosis through
modulating TLR4/MyD88/NF-κB pathway. Cell Cycle. 17:2001–2018.
2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Suo T, Chen GZ, Huang Y, Zhao KC, Wang T
and Hu K: miRNA-1246 suppresses acute lung injury-induced
inflammation and apoptosis via the NF-κB and Wnt/β-catenin signal
pathways. Biomed Pharmacother. 108:783–791. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang Y, Su Z, Liu HL, Li L, Wei M, Ge DJ
and Zhang ZJ: Effects of miR-26a-5p on neuropathic pain development
by targeting MAPK6 in in CCI rat models. Biomed Pharmacother.
107:644–649. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wen X, Yin Y, Li X, He T, Wang P, Song M
and Gao J: Effect of miR-26a-5p targeting ADAM17 gene on apoptosis,
inflammatory factors and oxidative stress response of myocardial
cells in hypoxic model. J Bioenerg Biomembr. 52:83–92. 2020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Cicha I and Goppelt-Struebe M: Connective
tissue growth factor: Context-dependent functions and mechanisms of
regulation. Biofactors. 35:200–208. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gressner OA and Gressner AM: Connective
tissue growth factor: A fibrogenic master switch in fibrotic liver
diseases. Liver Int. 28:1065–1079. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim JW, Rhee CK, Kim TJ, Kim YH, Lee SH,
Yoon HK, Kim SC, Lee SY, Kwon SS, Kim KH and Kim YK: Effect of
pravastatin on bleomycin-induced acute lung injury and pulmonary
fibrosis. Clin Exp Pharmacol Physiol. 37:1055–1063. 2010.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Ponticos M, Holmes AM, Shi-wen X, Leoni P,
Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP,
et al: Pivotal role of connective tissue growth factor in lung
fibrosis: MAPK-dependent transcriptional activation of type I
collagen. Arthritis Rheum. 60:2142–2155. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li X, Liu L, Shen Y, Wang T, Chen L, Xu D
and Wen F: MicroRNA-26a modulates transforming growth factor
beta-1-induced proliferation in human fetal lung fibroblasts.
Biochem Biophys Res Commun. 454:512–517. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li C, Han T, Li R, Fu L and Yue L:
miR-26a-5p mediates TLR signaling pathway by targeting CTGF in
LPS-induced alveolar macrophage. Biosci Rep. 40:BSR201925982020.
View Article : Google Scholar : PubMed/NCBI
|