1
|
Ng SC, Shi HY, Hamidi N, Underwood FE,
Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, et
al: Worldwide incidence and prevalence of inflammatory bowel
disease in the 21st century: A systematic review of
population-based studies. Lancet. 390:2769–2778. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lichtenstein GR and Rutgeerts P:
Importance of mucosal healing in ulcerative colitis. Inflamm Bowel
Dis. 16:338–346. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Monteleone I, Pallone F and Monteleone G:
Th17-cytokine blockers as a new approach for treating inflammatory
bowel disease. Ann Med. 43:172–178. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hardenberg G, Steiner TS and Levings MK:
Environmental influences on T regulatory cells in inflammatory
bowel disease. Semin Immunol. 23:130–138. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wu W, Chen F, Liu Z and Cong Y:
Microbiota-specific Th17 Cells: Yin and Yang in regulation of
inflammatory bowel disease. Inflamm Bowel Dis. 22:1473–1482. 2016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Cho J, Kim S, Yang DH, Lee J, Park KW, Go
J, Hyun CL, Jee Y and Kang KS: Mucosal immunity related to
FOXP3+ regulatory T cells, Th17 cells and cytokines in
pediatric inflammatory bowel disease. J Korean Med Sci.
33:e3362018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Martini E, Krug SM, Siegmund B, Neurath MF
and Becker C: Mend your fences: The epithelial barrier and its
relationship with mucosal immunity in inflammatory bowel disease.
Cell Mol Gastroenterol Hepatol. 4:33–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yao J, Wang JY, Lai MG, Li YX, Zhu HM, Shi
RY, Mo J, Xun AY, Jia CH, Feng JL, et al: Treatment of mice with
dextran sulfate sodium-induced colitis with human interleukin 10
secreted by transformed Bifidobacterium longum. Mol Pharm.
8:488–497. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sugimoto K, Hanai H, Tozawa K, Aoshi T,
Uchijima M, Nagata T and Koide Y: Curcumin prevents and ameliorates
trinitrobenzene rsulfonic acid-induced colitis in mice.
Gastroenterology. 123:1912–1922. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yao J, Wei C, Wang JY, Zhang R, Li YX and
Wang LS: Effect of resveratrol onTreg/Th17 signaling and ulcerative
colitis treatment in mice. World J Gastroenterol. 21:6572–6581.
2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang DG, Wei C, Yao J, Cai XY and Wang
LS: Interleukin-10 gene-carrying bifidobacteria ameliorate murine
ulcerative colitis by regulating regulatory T cell/T helper 17 cell
pathway. Exp Biol Med (Maywood). 240:1622–1629. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Eastaff-Leung N, Mabarrack N, Barbour A,
Cummins A and Barry S: Foxp3(+) regulatory T cells, Th17 effector
cells, and cytokine environment in inflammatory bowel disease. J
Clin Immunol. 30:80–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ogino H, Nakamura K, Ihara E, Akiho H and
Takayanagi R: CD4(+)CD25(+) regulatory T cells suppress
Th17-responses in an experimental colitis model. Dig Dis Sci.
56:376–386. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Carvalho A, Cunha C, Di Ianni M, Pitzurra
L, Aloisi T, Falzetti F, Carotti A, Bistoni F, Aversa F and Romani
L: Prognostic significance of genetic variants in the IL-23/Th17
pathway for the outcome of T cell-depleted allogeneic stem cell
transplantation. Bone Marrow Transplant. 45:1645–1652. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ukil A, Maity S, Karmakar S, Datta N,
Vedasiromoni JR and Das PK: Curcumin, the major component of food
flavour turmeric, reduces mucosal injury in trinitrobenzene
sulphonic acid-induced colitis. Br J Pharmacol. 139:209–218. 2003.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Bogaert S, Laukens D, Peeters H, Melis L,
Olievier K, Boon N, Verbruggen G, Vandesompele J, Elewaut D and De
Vos M: Differential mucosal expression of Th17-related genes
between the inflamed colon and ileum of patients with inflammatory
bowel disease. BMC Immunol. 11:612010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Noma T: Helper T cell paradigm: Th17 and
regulatory T cells involved in autoimmune inflammatory disorders,
pathogen defense and allergic diseases. Nihon Rinsho Meneki Gakkai
Kaishi. 33:262–271. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Billerey-Larmonier C, Uno JK, Larmonier N,
Midura AJ, Timmermann B, Ghishan FK and Kiela PR: Protective
effects of dietary curcumin in mouse model of chemically induced
colitis are strain dependent. Inflamm Bowel Dis. 14:780–793. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Arafa HM, Hemeida RA, El-Bahrawy AI and
Hamada FM: Prophylactic role of curcumin in dextran sulfate sodium
(DSS)-induced ulcerative colitis murine model. Food Chem Toxicol.
47:1311–1317. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Deguchi Y, Andoh A, Inatomi O, Yagi Y,
Bamba S, Araki Y, Hata K, Tsujikawa T and Fujiyama Y: Curcumin
prevents the development of dextran sulfate sodium (DSS)-induced
experimental colitis. Dig Dis Sci. 52:2993–2998. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cooper HS, Murthy SN, Shah RS and
Sedergran DJ: Clinicopathologic study of dextran sulfate sodium
experimental murine colitis. Lab Invest. 69:238–249.
1993.PubMed/NCBI
|
22
|
Wang Y and Zhao Y: Influence of zuoguiyin
on antioxidation in blood thymus and spleen index of senile mice.
Chinese J Exp Traditional Med Formulae. 13:67–68. 2007.
|
23
|
Camacho-Barquero L, Villegas I,
Sánchez-Calvo JM, Talero E, Sánchez-Fidalgo S, Motilva V and de la
Lastra CA: Curcumin, a curcuma longaconstituent, acts on MAPK p38
pathway modulating COX-2 and iNOS expression in chronic
experimental colitis. Int Immunopharmacol. 7:333–342. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Villegas I, Sánchez-Fidalgo S and de la
Lastra CA: Chemopreventive effect of dietary curcumin on
inflammation-induced colorectal carcinogenesis in mice. Mol Nutr
Food Res. 55:259–267. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fuss IJ: Is the Th1/Th2 paradigm of immune
regulation applicable to IBD? Inflamm Bowel Dis. 14 (Suppl
2):S110–S112. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Awasthi A, Murugaiyan G and Kuchroo VK:
Interplay between effector Th17 and regulatory T cells. J Clin
Immunol. 28:660–670. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lane N, Robins RA, Corne J and Fairclough
L: Regulation in chronic obstructive pulmonary disease: The role of
regulatory T-cells and Th17 cells. Clin Sci (Lond). 119:75–86.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Abraham C and Cho J: Interleukin-23/Th17
pathways and inflammatory bowel disease. Inflamm Bowel Dis.
15:1090–1100. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Di Cesare A, Di Meglio P and Nestle FO:
The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J
Invest Dermatol. 129:1339–1350. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wakashin H, Hirose K, Iwamoto I and
Nakajima H: Role of IL-23-Th17 cell axis in allergic airway
inflammation. Int Arch Allergy Immunol. 149 (Suppl 1):S108–S112.
2009. View Article : Google Scholar
|
31
|
Horiuchi A, Hayashi T, Kikuchi N, Hayashi
A, Fuseya C, Shiozawa T and Konishi I: Hypoxia upregulates ovarian
cancer invasiveness via the binding of HIF-1α to a hypoxia-induced,
methylation-free hypoxia response element of S100A4 gene. Int J
Cancer. 131:1755–1767. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chu WF, Wan L, Zhao D, Qu XF, Cai FL, Huo
R, Wang N, Zhu J, Zhang C, Zheng F, et al: Mild hypoxia-induced
cardiomyocyte hypertrophy via up-regulation of HIF-1α-mediated TRPC
signalling. J Cell Mol Med. 16:2022–2034. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fiocchi C: Inflammatory bowel disease:
Etiology and pathogenesis. Gastroenterology. 115:182–205. 1998.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Szkaradkiewicz A, Marciniak R,
Chudzicka-Strugała I, Wasilewska A, Drews M, Majewski P, Karpiński
T and Zwoździak B: Proinflammatory cytokines and IL-10 in
inflammatory bowel disease and colorectal cancer patients. Arch
Immunol Ther Exp (Warsz). 57:291–294. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bandgar BP, Hote BS, Jalde SS and Gacche
RN: Synthesis and biological evaluation of novel curcumin analogues
as anti-inflammatory, anti-cancer and anti-oxidant agents. Med Chem
Res. 21:3006–3014. 2012. View Article : Google Scholar
|
36
|
Holt PR, Katz S and Kirshoff R: Curcumin
therapy in inflammatory bowel disease: A pilot study. Dig Dis Sci.
50:2191–2193. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shen W and Durum SK: Synergy of IL-23 and
Th17 cytokines: New light on inflammatory bowel disease. Neurochem
Res. 35:940–946. 2010. View Article : Google Scholar : PubMed/NCBI
|