1
|
Lim BG, Lee IO, Ahn H, Lee DK, Won YJ, Kim
HJ and Kim H: Comparison of the incidence of emergence agitation
and emergence times between desflurane and sevoflurane anesthesia
in children: A systematic review and meta-analysis. Medicine
(Baltimore). 95:e49272016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sun L: Early childhood general anaesthesia
exposure and neurocognitive development. Br J Anaesth. 105 (Suppl
1):i61–i8. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hu X, Wang J, Zhang L, Zhang Q, Duan X and
Zhang Y: Postconditioning with sevoflurane ameliorates spatial
learning and memory deficit via attenuating endoplasmic reticulum
stress induced neuron apoptosis in a rat model of hemorrhage shock
and resuscitation. Brain Res. 1696:49–55. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xu L, Shen J, Yu L, Sun J and Yan M:
Autophagy is involved in sevoflurane-induced developmental
neurotoxicity in the developing rat brain. Brain Res Bull.
140:226–232. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Voss CM, Pajęcka K, Stridh MH, Nissen JD,
Schousboe A and Waagepetersen HS: AMPK activation affects glutamate
metabolism in astrocytes. Neurochem Res. 40:2431–2442. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Willows R, Sanders MJ, Xiao B, Patel BR,
Martin SR, Read J, Wilson JR, Hubbard J, Gamblin SJ and Carling D:
Phosphorylation of AMPK by upstream kinases is required for
activity in mammalian cells. Biochem J. 474:3059–3073. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Viollet B, Mounier R, Leclerc J, Yazigi A,
Foretz M and Andreelli F: Targeting AMP-activated protein kinase as
a novel therapeutic approach for the treatment of metabolic
disorders. Diabetes Metab. 33:395–402. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qian C, Jin J, Chen J, Li J, Yu X, Mo H
and Chen G: SIRT1 activation by resveratrol reduces brain edema and
neuronal apoptosis in an experimental rat subarachnoid hemorrhage
model. Mol Med Rep. 16:9627–9635. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yan WJ, Wang DB, Ren DQ, Wang LK, Hu ZY,
Ma YB, Huang JW and Ding SL: AMPKα1 overexpression improves
postoperative cognitive dysfunction in aged rats through AMPK-Sirt1
and autophagy signaling. J Cell Biochem. Feb 18–2019.(Epub ahead of
print).
|
10
|
Fulco M and Sartorelli V: Comparing and
contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell
Cycle. 7:3669–3679. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Salminen A and Kaarniranta K: SIRT1:
Regulation of longevity via autophagy. Cell Signal. 21:1356–1360.
2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen Z, Peng IC, Cui X, Li YS, Chien S and
Shyy JY: Shear stress, SIRT1, and vascular homeostasis. Proc Natl
Acad Sci USA. 107:10268–10273. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cantó C, Gerhart-Hines Z, Feige JN,
Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P and Auwerx
J: AMPK regulates energy expenditure by modulating NAD+
metabolism and SIRT1 activity. Nature. 458:1056–1060. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
An Y, Wang B, Wang X, Dong G, Jia J and
Yang Q: SIRT1 Inhibits Chemoresistance and cancer Stemness of
gastric cancer by initiating an AMPK/FOXO3 positive feedback loop.
Cell Death Dis. 11:1152020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huang J, Wang X, Zhu Y, Li Z, Zhu YT, Wu
JC, Qin ZH, Xiang M and Lin F: Exercise activates lysosomal
function in the brain through AMPK-SIRT1-TFEB pathway. CNS Neurosci
Ther. 25:796–807. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cetrullo S, D'Adamo S, Tantini B, Borzi RM
and Flamigni F: mTOR, AMPK, and Sirt1: Key players in metabolic
stress management. Crit Rev Eukaryot Gene Expr. 25:59–75. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Shah SA, Yoon GH, Chung SS, Abid MN, Kim
TH, Lee HY and Kim MO: Novel osmotin inhibits SREBP2 via the
AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer's disease
neuropathological deficits. Mol Psychiatry. 22:407–416. 2017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang Q, Li K and Yao S: Effect of
inhalational anesthetics on cytotoxicity and intracellular calcium
differently in rat pheochromocytoma cells (PC12). J Huazhong Univ
Sci Technolog Med Sci. 28:104–109. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bi C, Cai Q, Shan Y, Yang F, Sun S, Wu X
and Liu H: Sevoflurane induces neurotoxicity in the developing rat
hippocampus by upregulating connexin 43 via the JNK/c-Jun/AP-1
pathway. Biomed Pharmacother. 108:1469–1476. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jindal R, Kumra VP, Narani KK and Sood J:
Comparison of maintenance and emergence characteristics after
desflurane or sevoflurane in outpatient anaesthesia. Indian J
Anaesth. 55:36–42. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Choi ES, Shin JY, Oh AY, Park HP, Hwang
JW, Lim YJ and Jeon YT: Sevoflurane versus propofol for
interventional neuroradiology: A comparison of the maintenance and
recovery profiles at comparable depths of anesthesia. Korean J
Anesthesiol. 66:290–294. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Parida S and Badhe AS: Comparison of
cognitive, ambulatory, and psychomotor recovery profiles after day
care anesthesia with propofol and sevofurane. J Anesth. 28:833–838.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wilder RT, Flick RP, Sprung J, Katusic SK,
Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL and
Warner DO: Early exposure to anesthesia and learning disabilities
in a population-based birth cohort. Anesthesiology. 110:796–804.
2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jindal P, Khurana G, Oberoi D and Sharma
JP: Recovery profile and emergence delirium following Sevoflurane
and Isoflurane anesthesia in children posted for cleft lip surgery.
Middle East J Anaesthesiol. 21:679–684. 2012.PubMed/NCBI
|
25
|
Chandler JR, Myers D, Mehta D, Whyte E,
Groberman MK, Montgomery CJ and Ansermino JM: Emergence delirium in
children: A randomized trial to compare total intravenous
anesthesia with propofol and remifentanil to inhalational
sevofurane anesthesia. Paediatr Anaesth. 23:309–315. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yu Y, Feng L, Li J, Lan X, A L, Lv X,
Zhang M and Chen L: The alteration of autophagy and apoptosis in
the hippocampus of rats with natural aging-dependent cognitive
deficits. Behav Brain Res. 334:155–162. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lu Z, Miao Y, Muhammad I, Tian E, Hu W,
Wang J, Wang B, Li R and Li J: Colistin-induced autophagy and
apoptosis involves the JNK-Bcl2-Bax signaling pathway and
JNK-p53-ROS positive feedback loop in PC-12 cells. Chem Biol
Interact. 277:62–73. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo X, Shi Y, Du P, Wang J, Han Y, Sun B
and Feng J: HMGB1/TLR4 promotes apoptosis and reduces autophagy of
hippocampal neurons in diabetes combined with OSA. Life Sci.
239:1170202019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fricker M, Tolkovsky AM, Borutaite V,
Coleman M and Brown GC: Neuronal Cell Death. Physiol Rev.
98:813–880. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lau AW, Liu P, Inuzuka H and Gao D: SIRT1
phosphorylation by AMP-activated protein kinase regulates p53
acetylation. Am J Cancer Res. 4:245–255. 2014.PubMed/NCBI
|
31
|
Price NL, Gomes AP, Ling AJ, Duarte FV,
Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro
JS, et al: SIRT1 is required for AMPK activation and the beneficial
effects of resveratrol on mitochondrial function. Cell Metab.
15:675–690. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang Q, Liu S, Zhai A, Zhang B and Tian G:
AMPK-mediated regulation of lipid metabolism by phosphorylation.
Biol Pharm Bull. 41:985–993. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Garcia D and Shaw RJ: AMPK: Mechanisms of
cellular energy sensing and restoration of metabolic balance. Mol
Cell. 66:789–800. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yu HY, Cai YB and Liu Z: Activation of
AMPK improves lipopolysaccharide-induced dysfunction of the
blood-brain barrier in mice. Brain Inj. 29:777–784. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao Z, Hu J, Gao X, Liang H and Liu Z:
Activation of AMPK attenuates lipopolysaccharide-impaired integrity
and function of blood-brain barrier in human brain microvascular
endothelial cells. Exp Mol Pathol. 97:386–392. 2014. View Article : Google Scholar : PubMed/NCBI
|