1
|
Chen ZF, Li YB, Han JY, Yin JJ, Wang Y,
Zhu LB and Xie GY: Liraglutide prevents high glucose level induced
insulinoma cells apoptosis by targeting autophagy. Chin Med J
(Engl). 126:937–941. 2013.PubMed/NCBI
|
2
|
Chen ZF, Li YB, Han JY, Wang J, Yin JJ, Li
JB and Tian H: The double-edged effect of autophagy in pancreatic
beta cells and diabetes. Autophagy. 7:12–16. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang J, Wu J, Wu H, Liu X, Chen Y, Wu J,
Hu C and Zou D: Liraglutide protects pancreatic β-cells against
free fatty acids in vitro and affects glucolipid metabolism in
apolipoprotein E-/- mice by activating autophagy. Mol Med Rep.
12:4210–4218. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fan M, Jiang H, Zhang Y, Ma Y, Li L and Wu
J: Liraglutide enhances autophagy and promotes pancreatic β cell
proliferation to ameliorate type 2 diabetes in high-fat-fed and
streptozotocin-treated mice. Med Sci Monit. 24:2310–2316. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Li Q, Jia S, Xu L, Li B and Chen N:
Metformin-induced autophagy and irisin improves INS-1 cell function
and survival in high-glucose environment via AMPK/SIRT1/PGC-1α
signal pathway. Food Sci Nutr. 7:1695–1703. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee YH, Kim J, Park K and Lee MS: β-cell
autophagy: Mechanism and role in β-cell dysfunction. Mol Metab.
27S:S92–S103. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Toledo M and Singh R: Complement C3 and
autophagy keep the β cell alive. Cell Metab. 29:4–6. 2019.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu H, Yin JJ, Cao MM, Liu GD, Su Y and Li
YB: Endoplasmic reticulum stress induced by lipopolysaccharide is
involved in the association between inflammation and autophagy in
INS-1 cells. Mol Med Rep. 16:5787–5792. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
King BC, Kulak K, Krus U, Rosberg R, Golec
E, Wozniak K, Gomez MF, Zhang E, O'Connell DJ, Renström E, et al:
Complement component C3 is highly expressed in human pancreatic
islets and prevents β cell death via ATG16L1 interaction and
autophagy regulation. Cell Metab. 29:202–210.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhu L-B, Cao M-M, Wang J, Su Y, Jiang W,
Liu GD and Li YB: Role of autophagy in LPS-induced inflammation in
INS-1 cells. Mol Med Rep. 19:5211–5218. 2019.PubMed/NCBI
|
11
|
Zhou X-T, Pu Z-J, Liu L-X, Li GP, Feng JL,
Zhu HC and Wu LF: Inhibition of autophagy enhances
adenosine-induced apoptosis in human hepatoblastoma HepG2 cells.
Oncol Rep. 41:829–838. 2019.PubMed/NCBI
|
12
|
Quan W, Hur KY, Lim Y, Oh SH, Lee JC, Kim
KH, Kim GH, Kim SW, Kim HL, Lee MK, et al: Autophagy deficiency in
beta cells leads to compromised unfolded protein response and
progression from obesity to diabetes in mice. Diabetologia.
55:392–403. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kitamura T: The role of FOXO1 in β-cell
failure and type 2 diabetes mellitus. Nat Rev Endocrinol.
9:615–623. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang T, Kim DH, Xiao X, Lee S, Gong Z,
Muzumdar R, Calabuig-Navarro V, Yamauchi J, Harashima H, Wang R, et
al: FoxO1 Plays an Important Role in Regulating β-Cell Compensation
for Insulin Resistance in Male Mice. Endocrinology. 157:1055–1070.
2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
He W, Zhang A, Qi L, Na C, Jiang R, Fan Z
and Chen J: FOXO1, a potential therapeutic target, regulates
Autophagic flux, oxidative stress, mitochondrial dysfunction, and
apoptosis in human cholangiocarcinoma QBC939 cells. Cell Physiol
Biochem. 45:1506–1514. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mo X, Wang X, Ge Q and Bian F: The effects
of SIRT1/FoxO1 on LPS induced INS-1 cells dysfunction. Stress.
22:70–82. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kitamura YI, Kitamura T, Kruse JP, Raum
JC, Stein R, Gu W and Accili D: FoxO1 protects against pancreatic
beta cell failure through NeuroD and MafA induction. Cell Metab.
2:153–163. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kobayashi M, Kikuchi O, Sasaki T, Kim HJ,
Yokota-Hashimoto H, Lee YS, Amano K, Kitazumi T, Susanti VY,
Kitamura YI, et al: FoxO1 as a double-edged sword in the pancreas:
Analysis of pancreas- and β-cell-specific FoxO1 knockout mice. Am J
Physiol Endocrinol Metab. 302:E603–E613. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu Q, Hu Y, Jiang M, Wang F and Gong G:
Effect of autophagy regulated by Sirt1/FoxO1 pathway on the release
of factors promoting thrombosis from vascular endothelial cells.
Int J Mol Sci. 20:41322019. View Article : Google Scholar
|
20
|
Ren H, Shao Y, Wu C, Ma X, Lv C and Wang
Q: Metformin alleviates oxidative stress and enhances autophagy in
diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell
Endocrinol. 500:1106282020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shao S, Nie M, Chen C, Chen X, Zhang M,
Yuan G, Yu X and Yang Y: Protective action of liraglutide in beta
cells under lipotoxic stress via PI3K/Akt/FoxO1 pathway. J Cell
Biochem. 115:1166–1175. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Muhammad AB, Xing B, Liu C, Naji A, Ma X,
Simmons RA and Hua X: Menin and PRMT5 suppress GLP1 receptor
transcript and PKA-mediated phosphorylation of FOXO1 and CREB. Am J
Physiol Endocrinol Metab. 313:E148–E166. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yin J, Wang Y, Gu L, Fan N, Ma Y and Peng
Y: Palmitate induces endoplasmic reticulum stress and autophagy in
mature adipocytes: Implications for apoptosis and inflammation. Int
J Mol Med. 35:932–940. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xing YQ, Li A, Yang Y, Li XX, Zhang LN and
Guo HC: The regulation of FOXO1 and its role in disease
progression. Life Sci. 193:124–131. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen B, Zhou W, Zhao W, Yuan P, Tang C,
Wang G, Leng J, Ma J, Wang X, Hui Y, et al: Oxaliplatin reverses
the GLP-1R-mediated promotion of intrahepatic cholangiocarcinoma by
altering FoxO1 signaling. Oncol Lett. 18:1989–1998. 2019.PubMed/NCBI
|
26
|
Wang F, Yin J, Ma Y, Jiang H and Li Y:
Vitexin alleviates lipopolysaccharide-induced islet cell injury by
inhibiting HMGB1 release. Mol Med Rep. 15:1079–1086. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Cao MM, Lu X, Liu GD, Su Y, Li YB and Zhou
J: Resveratrol attenuates type 2 diabetes mellitus by mediating
mitochondrial biogenesis and lipid metabolism via Sirtuin type 1.
Exp Ther Med. 15:576–584. 2018.PubMed/NCBI
|
28
|
Fu J, Nchambi KM, Wu H, Luo X, An X and
Liu D: Liraglutide protects pancreatic β cells from endoplasmic
reticulum stress by upregulating MANF to promote autophagy
turnover. Life Sci. 252:1176482020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bugliani M, Mossuto S, Grano F, Suleiman
M, Marselli L, Boggi U, De Simone P, Eizirik DL, Cnop M, Marchetti
P, et al: Modulation of autophagy influences the function and
survival of human pancreatic beta cells under endoplasmic reticulum
stress conditions and in type 2 diabetes. Front Endocrinol
(Lausanne). 10:522019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chu KY, O'Reilly L, Mellet N, Meikle PJ,
Bartley C and Biden TJ: Oleate disrupts cAMP signaling,
contributing to potent stimulation of pancreatic β-cell autophagy.
J Biol Chem. 294:1218–1229. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zummo FP, Cullen KS, Honkanen-Scott M,
Shaw JAM, Lovat PE and Arden C: Glucagon-Like peptide 1 protects
pancreatic β-cells from death by increasing autophagic flux and
restoring lysosomal function. Diabetes. 66:1272–1285. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang J, Tokui Y, Yamagata K, Kozawa J,
Sayama K, Iwahashi H, Okita K, Miuchi M, Konya H, Hamaguchi T, et
al: Continuous stimulation of human glucagon-like peptide-1 (7–36)
amide in a mouse model (NOD) delays onset of autoimmune type 1
diabetes. Diabetologia. 50:1900–1909. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu Y-J, Wu Y-B, Fang Z-H, Chen MQ, Wang
YF, Wu CY and Lv MA: Danzhi Jiangtang capsule mediates NIT-1
insulinoma cell proliferation and apoptosis by GLP-1/Akt signaling
pathway. Evid Based Complement Alternat Med. 2019:53568252019.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang A, Li T, An P, Yan W, Zheng H, Wang B
and Mu Y: Exendin-4 upregulates adiponectin level in adipocytes via
Sirt1/Foxo-1 signaling pathway. PLoS One. 12:e01694692017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu J, Yin F, Xiao H, Guo L and Gao X:
Glucagon-like peptide 1 receptor plays an essential role in
geniposide attenuating lipotoxicity-induced β-cell apoptosis.
Toxicol In Vitro. 26:1093–1097. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bastien-Dionne PO, Valenti L, Kon N, Gu W
and Buteau J: Glucagon-like peptide 1 inhibits the sirtuin
deacetylase SirT1 to stimulate pancreatic β-cell mass expansion.
Diabetes. 60:3217–3222. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shaklai S, Grafi-Cohen M, Sharon O, Sagiv
N, Shefer G, Somjen D and Stern N: Pancreatic beta-cell
proliferation induced by estradiol-17β is Foxo1 dependent. Horm
Metab Res. 50:485–490. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kibbe C, Chen J, Xu G, Jing G and Shalev
A: FOXO1 competes with carbohydrate response element-binding
protein (ChREBP) and inhibits thioredoxin-interacting protein
(TXNIP) transcription in pancreatic beta cells. J Biol Chem.
288:23194–23202. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu L, Zheng LD, Zou P, Brooke J, Smith C,
Long YC, Almeida FA, Liu D and Cheng Z: FoxO1 antagonist suppresses
autophagy and lipid droplet growth in adipocytes. Cell Cycle.
15:2033–2041. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Min S, Zhu T, Tong J, Caidan R, Wang K,
Kai G, Zhang W, Ru L, Pengcuo J and Tong L: Screening active
components from Rubus amabilis for pancreatic β-cells
protection. Pharm Biol. 58:674–685. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu X, Zeng X, Chen X, Luo R, Li L, Wang
C, Liu J, Cheng J, Lu Y and Chen Y: Oleic acid protects
insulin-secreting INS-1E cells against palmitic acid-induced
lipotoxicity along with an amelioration of ER stress. Endocrine.
64:512–524. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu C, Fu Y, Li CE, Chen T and Li X:
Phycocyanin-functionalized selenium nanoparticles reverse palmitic
acid-induced pancreatic β cell apoptosis by enhancing cellular
uptake and blocking reactive oxygen species (ROS)-mediated
mitochondria dysfunction. J Agric Food Chem. 65:4405–4413. 2017.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Yang Y, Fang H, Xu G, Zhen Y, Zhang Y,
Tian J, Zhang D, Zhang G and Xu J: Liraglutide improves cognitive
impairment via the AMPK and PI3K/Akt signaling pathways in type 2
diabetic rats. Mol Med Rep. 18:2449–2457. 2018.PubMed/NCBI
|