1
|
Boateng S and Sanborn T: Acute myocardial
infarction. Dis Mon. 59:83–96. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Benjamin EJ, Muntner P, Alonso A,
Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR,
Cheng S, Das SR, et al: Heart disease and stroke statistics-2019
update: A report from the american heart association. Circulation.
139:e56–e528. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mehta LS, Beckie TM, DeVon HA, Grines CL,
Krumholz HM, Johnson MN, Lindley KJ, Vaccarino V, Wang TY, Watson
KE, et al: Acute myocardial infarction in women: A scientific
statement from the American heart association. Circulation.
133:916–947. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ni XQ and Hu ZY: Remifentanil improves
myocardial ischemia-reperfusion injury in rats through inhibiting
IL-18 signaling pathway. Eur Rev Med Pharmacol Sci. 24:3915–3922.
2020.PubMed/NCBI
|
5
|
Chen Q, Zhou Y, Richards AM and Wang P:
Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced
autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways.
Biochem Biophys Res Commun. 474:168–174. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hausenloy DJ and Yellon DM: Myocardial
ischemia-reperfusion injury: A neglected therapeutic target. J Clin
Invest. 123:92–100. 2013. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Luan Y, Ruan Y, Wang T, Zhuan L, Wen Z,
Chen R, Zhang Y, Cui K, Yang J, Wang S, et al: Preserved erectile
function in the aged transgenic rat harboring human tissue
kallikrein 1. J Sex Med. 13:1311–1322. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Luan Y, Cui K, Tang Z, Ruan Y, Liu K, Wang
T, Chen Z, Wang S and Liu J: Human tissue kallikrein 1 improves
erectile dysfunction of streptozotocin-induced diabetic rats by
inhibition of excessive oxidative stress and activation of the
PI3K/AKT/eNOS pathway. Oxid Med Cell Longev. 2020:68342362020.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Gao L, Bledsoe G, Yin H, Shen B, Chao L
and Chao J: Tissue kallikrein-modified mesenchymal stem cells
provide enhanced protection against ischemic cardiac injury after
myocardial infarction. Circ J. 77:2134–2144. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lorente L, Martín MM, Ramos L, Argueso M,
Cáceres JJ, Solé-Violán J, Jiménez A, Borreguero-León JM,
González-Rivero AF, Orbe J, et al: Persistently high circulating
tissue inhibitor of matrix metalloproteinase-1 levels in
non-survivor brain trauma injury patients. J Crit Care. 51:117–121.
2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Takawale A, Fan D, Basu R, Shen M,
Parajuli N, Wang W, Wang X, Oudit GY and Kassiri Z: Myocardial
recovery from ischemia-reperfusion is compromised in the absence of
tissue inhibitor of metalloproteinase 4. Circ Heart Fail.
7:652–662. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Su YY, Li HM, Yan ZX, Li MC, Wei JP, Zheng
WX, Liu SQ, Deng YT, Xie HF and Li CG: Renin-angiotensin system
activation and imbalance of matrix metalloproteinase-9/tissue
inhibitor of matrix metalloproteinase-1 in cold-induced stroke.
Life Sci. 231:1165632019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kelly D, Squire IB, Khan SQ, Dhillon O,
Narayan H, Ng KH, Quinn P, Davies JE and Ng LL: Usefulness of
plasma tissue inhibitors of metalloproteinases as markers of
prognosis after acute myocardial infarction. Am J Cardiol.
106:477–482. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu P, Yu H, Huang S, Xiang H, Li F and
Zheng W: Synergistic effect of a tissue kallikrein 1 and tissue
inhibitor of matrix metalloproteinase 1 co-expression vector on the
proliferation of rat vascular smooth muscle cells. Mol Med Rep.
12:5671–5678. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press; Washington, DC: 2011
|
16
|
Yu HZ, Xie LD, Zhu PL, Xu CS and Wang HJ:
Human tissue kallikrein 1 gene delivery inhibits PDGF-BB-induced
vascular smooth muscle cells proliferation and upregulates the
expressions of p27Kip1 and p2lCip1. Mol Cell Biochem. 360:363–371.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhu L, Xu C, Huo X, Hao H, Wan Q, Chen H,
Zhang X, Breyer RM, Huang Y, Cao X, et al: The
cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor
pathway constrains myocardial ischemia-reperfusion injury. Nat
Commun. 10:18882019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu S, Cao S, Tong Z and Liu J: FGF21
protects myocardial ischemia-reperfusion injury through reduction
of miR-145-mediated autophagy. Am J Transl Res. 10:3677–3688.
2018.PubMed/NCBI
|
19
|
Li W, Feng G, Gauthier JM, Lokshina I,
Higashikubo R, Evans S, Liu X, Hassan A, Tanaka S, Cicka M, et al:
Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil
recruitment after heart transplantation. J Clin Invest.
129:2293–2304. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zheng QN, Wei XH, Pan CS, Li Q, Liu YY,
Fan JY and Han JY: QiShenYiQi Pills® ameliorates
ischemia/reperfusion-induced myocardial fibrosis involving RP
S19-mediated TGFβ1/Smads signaling pathway. Pharmacol Res.
146:1042722019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lan TH, Huang XQ and Tan HM: Vascular
fibrosis in atherosclerosis. Cardiovasc Pathol. 22:401–407. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Podesser BK, Kreibich M, Dzilic E, Santer
D, Förster L, Trojanek S, Abraham D, Krššák M, Klein KU, Tretter
EV, et al: Tenascin-C promotes chronic pressure overload-induced
cardiac dysfunction, hypertrophy and myocardial fibrosis. J
Hypertens. 36:847–856. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Scofield SLC, Dalal S, Lim KA, Thrasher
PR, Daniels CR, Peterson JM, Singh M and Singh K: Exogenous
ubiquitin reduces inflammatory response and preserves myocardial
function 3 days post-ischemia-reperfusion injury. Am J Physiol
Heart Circ Physiol. 316:H617–H628. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yin H, Chao L and Chao J: Nitric oxide
mediates cardiac protection of tissue kallikrein by reducing
inflammation and ventricular remodeling after myocardial
ischemia/reperfusion. Life Sci. 82:156–165. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang Q, He GW, Underwood MJ and Yu CM:
Cellular and molecular mechanisms of endothelial
ischemia/reperfusion injury: Perspectives and implications for
postischemic myocardial protection. Am J Transl Res. 8:765–777.
2016.PubMed/NCBI
|
27
|
Galaup A, Gomez E, Souktani R, Durand M,
Cazes A, Monnot C, Teillon J, Le Jan S, Bouleti C, Briois G, et al:
Protection against myocardial infarction and no-reflow through
preservation of vascular integrity by angiopoietin-like 4.
Circulation. 125:140–149. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yao YY, Yin H, Shen B, Chao L and Chao J:
Tissue kallikrein and kinin infusion rescues failing myocardium
after myocardial infarction. J Card Fail. 13:588–596. 2007.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Ling L, Hou Q, Xing S, Yu J, Pei Z and
Zeng J: Exogenous kallikrein enhances neurogenesis and angiogenesis
in the subventricular zone and the peri-infarction region and
improves neurological function after focal cortical infarction in
hypertensive rats. Brain Res. 1206:89–97. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu H, Chen B and Lilly B: Fibroblasts
potentiate blood vessel formation partially through secreted factor
TIMP-1. Angiogenesis. 11:223–234. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lin KC, Yip HK, Shao PL, Wu SC, Chen KH,
Chen YT, Yang CC, Sun CK, Kao GS, Chen SY, et al: Combination of
adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived
exosomes for protecting kidney from acute ischemia-reperfusion
injury. Int J Cardiol. 216:173–185. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mokhtari-Zaer A, Marefati N, Atkin SL,
Butler AE and Sahebkar A: The protective role of curcumin in
myocardial ischemia-reperfusion injury. J Cell Physiol.
234:214–222. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu
W, Bennett MVL and Chen J: Oxidative stress and DNA damage after
cerebral ischemia: Potential therapeutic targets to repair the
genome and improve stroke recovery. Neuropharmacology. 134:208–217.
2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rocca C, Boukhzar L, Granieri MC, Alsharif
I, Mazza R, Lefranc B, Tota B, Leprince J, Cerra MC, Anouar Y and
Angelone T: A selenoprotein T-derived peptide protects the heart
against ischaemia/reperfusion injury through inhibition of
apoptosis and oxidative stress. Acta Physiol (Oxf). 223:e130672018.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Jiang M, Ni J, Cao Y, Xing X, Wu Q and Fan
G: Astragaloside IV attenuates myocardial ischemia-reperfusion
injury from oxidative stress by regulating succinate,
lysophospholipid metabolism, and ROS scavenging system. Oxid Med
Cell Longev. 2019:91376542019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yao BJ, He XQ, Lin YH and Dai WJ:
Cardioprotective effects of anisodamine against myocardial
ischemia/reperfusion injury through the inhibition of oxidative
stress, inflammation and apoptosis. Mol Med Rep. 17:1253–1260.
2018.PubMed/NCBI
|
37
|
Zhang JJ, Bledsoe G, Kato K, Chao L and
Chao J: Tissue kallikrein attenuates salt-induced renal fibrosis by
inhibition of oxidative stress. Kidney Int. 66:722–732. 2004.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Atluri VS, Jayant RD, Pilakka-Kanthikeel
S, Garcia G, Samikkannu T, Yndart A, Kaushik A and Nair M:
Development of TIMP1 magnetic nanoformulation for regulation of
synaptic plasticity in HIV-1 infection. Int J Nanomedicine.
11:4287–4298. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xiao A, Li H, Shechter D, Ahn SH, Fabrizio
LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P,
Hofmann K, et al: WSTF regulates the H2A.X DNA damage response via
a novel tyrosine kinase activity. Nature. 457:57–62. 2009.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang X, Mei Y, Wang T, Liu F, Jiang N,
Zhou W and Zhang Y: Early oxidative stress, DNA damage and
inflammation resulting from subcutaneous injection of sulfur
mustard into mice. Environ Toxicol Pharmacol. 55:68–73. 2017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu Y, Long YH, Wang SQ, Li YF and Zhang
JH: Phosphorylation of H2A.XTyr39 positively regulates
DNA damage response and is linked to cancer progression. FEBS J.
283:4462–4473. 2016. View Article : Google Scholar : PubMed/NCBI
|