1
|
Menezes KM, Wang H, Hada M and Saganti PB:
Radiation matters of the heart: A mini review. Front Cardiovasc
Med. 5:832018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Spetz J, Moslehi J and Sarosiek K:
Radiation-Induced cardiovascular toxicity: Mechanisms, prevention,
and treatment. Curr Treat Options Cardiovasc Med. 20:312018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Barjaktarovic Z, Kempf SJ, Sriharshan A,
Merl-Pham J, Atkinson MJ and Tapio S: Ionizing radiation induces
immediate protein acetylation changes in human cardiac
microvascular endothelial cells. J Radiat Res. 56:623–632. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wakeford R: Radiation in the workplace-a
review of studies of the risks of occupational exposure to ionising
radiation. J Radiol Prot. 29:A61–A79. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Roychoudhuri R, Robinson D, Putcha V,
Cuzick J, Darby S and Moller H: Increased cardiovascular mortality
more than fifteen years after radiotherapy for breast cancer: A
population-based study. BMC Cancer. 7:92007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cohn KE, Stewart JR, Fajardo LF and
Hancock EW: Heart disease following radiation. Medicine
(Baltimore). 46:281–298. 1967. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cuzick J, Stewart H, Peto R, Baum M,
Fisher B, Host H, Lythgoe JP, Ribeiro G, Scheurlen H and Wallgren
A: Overview of randomized trials of postoperative adjuvant
radiotherapy in breast cancer. Cancer Treat Rep. 71:15–29.
1987.PubMed/NCBI
|
8
|
Darby SC, McGale P, Taylor CW and Peto R:
Long-term mortality from heart disease and lung cancer after
radiotherapy for early breast cancer: Prospective cohort study of
about 300,000 women in US SEER cancer registries. Lancet Oncol.
6:557–565. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
van Nimwegen FA, Ntentas G, Darby SC,
Schaapveld M, Hauptmann M, Lugtenburg PJ, Janus CPM, Daniels L, van
Leeuwen FE, Cutter DJ and Aleman BMP: Risk of heart failure in
survivors of Hodgkin lymphoma: Effects of cardiac exposure to
radiation and anthracyclines. Blood. 129:2257–2265. 2017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Little MP, Tawn EJ, Tzoulaki I, Wakeford
R, Hildebrandt G, Paris F, Tapio S and Elliott P: A systematic
review of epidemiological associations between low and moderate
doses of ionizing radiation and late cardiovascular effects, and
their possible mechanisms. Radiat Res. 169:99–109. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hsiao KY, Sun HS and Tsai SJ: Circular
RNA-New member of noncoding RNA with novel functions. Exp Biol Med
(Maywood). 242:1136–1141. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gan J, Yuan J, Liu Y, Lu Z, Xue Y, Shi L
and Zeng H: Circular RNA_101237 mediates anoxia/reoxygenation
injury by targeting let-7a-5p/IGF2BP3 in cardiomyocytes. Int J Mol
Med. 45:451–460. 2020.PubMed/NCBI
|
13
|
Pan RY, Zhao CH, Yuan JX, Zhang YJ, Jin
JL, Gu MF, Mao ZY, Sun HJ, Jia QW, Ji MY, et al: Circular RNA
profile in coronary artery disease. Am J Transl Res. 11:7115–7125.
2019.PubMed/NCBI
|
14
|
Su Q and Lv X: Revealing new landscape of
cardiovascular disease through circular RNA-miRNA-mRNA axis.
Genomics. 112:1680–1685. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Garikipati VN, Verma SK, Cheng Z, Liang D,
Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al:
Circular RNA CircFndc3b modulates cardiac repair after myocardial
infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Aonuma T, Bayoumi AS, Tang Y and Kim IM: A
circular RNA regulator quaking: A novel gold mine to be unfolded in
doxorubicin-mediated cardiotoxicity. Noncoding RNA Investig.
2:192018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kulcheski FR, Christoff AP and Margis R:
Circular RNAs are miRNA sponges and can be used as a new class of
biomarker. J Biotechnol. 238:42–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen B and Huang S: Circular RNA: An
emerging non-coding RNA as a regulator and biomarker in cancer.
Cancer Lett. 418:41–50. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kristensen LS, Hansen TB, Veno MT and
Kjems J: Circular RNAs in cancer: Opportunities and challenges in
the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang
Z and Yang BB: Induction of tumor apoptosis through a circular RNA
enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou J, Zhou LY, Tang X, Zhang J, Zhai LL,
Yi YY, Yi J, Lin J, Qian J and Deng ZQ: Circ-Foxo3 is positively
associated with the Foxo3 gene and leads to better prognosis of
acute myeloid leukemia patients. BMC Cancer. 19:9302019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang S, Liao K, Miao Z, Wang Q, Miao Y,
Guo Z, Qiu Y, Chen B, Ren L, Wei Z, et al: CircFOXO3 promotes
glioblastoma progression by acting as a competing endogenous RNA
for NFAT5. Neuro Oncol. 21:1284–1296. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lu WY: Roles of the circular RNA
circ-Foxo3 in breast cancer progression. Cell Cycle. 16:589–590.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Du WW, Yang W, Chen Y, Wu ZK, Foster FS,
Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac
senescence by modulating multiple factors associated with stress
and senescence responses. Eur Heart J. 38:1402–1412.
2017.PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen Y, Ye X, Xia X and Lin X: Circular
RNA ABCB10 correlates with advanced clinicopathological features
and unfavorable survival, and promotes cell proliferation while
reduces cell apoptosis in epithelial ovarian cancer. Cancer
Biomark. 26:151–161. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Luo L, Gao YQ and Sun XF: Circular RNA
ITCH suppresses proliferation and promotes apoptosis in human
epithelial ovarian cancer cells by sponging miR-10a-α. Eur Rev Med
Pharmacol Sci. 22:8119–8126. 2018.PubMed/NCBI
|
28
|
Ning L, Long B, Zhang W, Yu M, Wang S, Cao
D, Yang J, Shen K, Huang Y and Lang J: Circular RNA profiling
reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers
in epithelial ovarian cancer. Int J Oncol. 53:2637–2646.
2018.PubMed/NCBI
|
29
|
Qian ZR, Ren L, Wu DC, Yang X, Zhou ZY,
Nie QM, Jiang G, Xue S, Weng W, Qiu Y and Lin Y: Overexpression of
FoxO3a is associated with glioblastoma progression and predicts
poor patient prognosis. Int J Cancer. 140:2792–2804. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Salata C, Ferreira-Machado SC, De Andrade
CBV, Mencalha AL, Mandarim-De-Lacerda CA and de Almeida CE:
Apoptosis induction of cardiomyocytes and subsequent fibrosis after
irradiation and neoadjuvant chemotherapy. Int J Radiat Biol.
90:284–290. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sarosiek KA, Chi X, Bachman JA, Sims JJ,
Montero J, Patel L, Flanagan A, Andrews DW, Sorger P and Letai A:
BID Preferentially activates BAK while BIM preferentially activates
BAX, affecting chemotherapy response. Mol Cell. 51:751–765. 2013.
View Article : Google Scholar : PubMed/NCBI
|