1
|
Pepene CE, Ilie IR, Marian I and Duncea I:
Circulating osteoprotegerin and soluble receptor activator of
nuclear factor κB ligand in polycystic ovary syndrome:
Relationships to insulin resistance and endothelial dysfunction.
Eur J Endocrinol. 164:61–68. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Franik S, Eltrop SM, Kremer JA, Kiesel L
and Farquhar C: Aromatase inhibitors (letrozole) for subfertile
women with polycystic ovary syndrome. Cochrane Database Syst Rev.
5:CD0102872018.PubMed/NCBI
|
3
|
Broekmans FJ and Fauser BC: Diagnostic
criteria for polycystic ovarian syndrome. Endocrine. 30:3–11. 2006.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Ding L, Gao F, Zhang M, Yan W, Tang R,
Zhang C and Chen ZJ: Higher PDCD4 expression is associated with
obesity, insulin resistance, lipid metabolism disorders, and
granulosa cell apoptosis in polycystic ovary syndrome. Fertil
Steril. 105:1330–1337.e3. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kosova G and Urbanek M: Genetics of the
polycystic ovary syndrome. Mol Cell Endocrinol. 373:29–38. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Urbanek M: The genetics of the polycystic
ovary syndrome. Nat Clin Pract Endocrinol Metab. 3:103–111. 2007.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi
Y, Li Z, You L, Zhao J, Liu J, et al: Genome-wide association study
identifies susceptibility loci for polycystic ovary syndrome on
chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 43:55–59. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Diamanti-Kandarakis E and Piperi C:
Genetics of polycystic ovary syndrome: Searching for the way out of
the labyrinth. Hum Reprod Update. 11:631–643. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hossain MM, Cao M, Wang Q, Kim JY,
Schellander K, Tesfaye D and Tsang BK: Altered expression of miRNAs
in a dihydrotestosterone-induced rat PCOS model. J Ovarian Res.
6:362013. View Article : Google Scholar : PubMed/NCBI
|
10
|
McCallie B, Schoolcraft WB and Katz-Jaffe
MG: Aberration of blastocyst microRNA expression is associated with
human infertility. Fertil Steril. 93:2374–2382. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang Y, Zhao P, Qian D, Hu M, Zhang L, Shi
H and Wang B: MicroRNA-613 is downregulated in HCMV-positive
glioblastoma and inhibits tumour progression by targeting
arginase-2. Tumour Biol. 39:10104283177125122017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Q, Zhou L, Wang M, Wang N, Li C, Wang J
and Qi L: MicroRNA-613 impedes the proliferation and invasion of
glioma cells by targeting cyclin-dependent kinase 14. Biomed
Pharmacother. 98:636–642. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li B, Xie Z, Li Z, Chen S and Li B:
MicroRNA-613 targets FMNL2 and suppresses progression of colorectal
cancer. Am J Transl Res. 8:5475–5484. 2016.PubMed/NCBI
|
14
|
Kanafchian M, Esmaeilzadeh S, Mahjoub S,
Rahsepar M and Ghasemi M: Status of serum copper, magnesium, and
total antioxidant capacity in patients with polycystic ovary
syndrome. Biol Trace Elem Res. 193:111–117. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Rosenfield RL and Ehrmann DA: The
pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of
PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev.
37:467–520. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang F, Ruan YC, Yang YJ, Wang K, Liang
SS, Han YB, Teng XM and Yang JZ: Follicular hyperandrogenism
downregulates aromatase in luteinized granulosa cells in polycystic
ovary syndrome women. Reproduction. 150:289–296. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Belani M, Deo A, Shah P, Banker M, Singal
P and Gupta S: Differential insulin and steroidogenic signaling in
insulin resistant and non-insulin resistant human luteinized
granulosa cells-A study in PCOS patients. J Steroid Biochem Mol
Biol. 178:283–292. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lima PDA, Nivet AL, Wang Q, Chen YA,
Leader A, Cheung A, Tzeng CR and Tsang BK: Polycystic ovary
syndrome: Possible involvement of androgen-induced,
chemerin-mediated ovarian recruitment of monocytes/macrophages.
Biol Reprod. 99:838–852. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang C, Ma J, Wang W, Sun Y and Sun K:
Lysyl oxidase blockade ameliorates anovulation in polycystic ovary
syndrome. Hum Reprod. 33:2096–2106. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sirotkin AV, Lauková M, Ovcharenko D,
Brenaut P and Mlyncek M: Identification of microRNAs controlling
human ovarian cell proliferation and apoptosis. J Cell Physiol.
223:49–56. 2010.PubMed/NCBI
|
22
|
Yao G, Yin M, Lian J, Tian H, Liu L, Li X
and Sun F: MicroRNA-224 is involved in transforming growth
factor-beta-mediated mouse granulosa cell proliferation and
granulosa cell function by targeting Smad4. Mol Endocrinol.
24:540–551. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Roth LW, McCallie B, Alvero R, Schoolcraft
WB, Minjarez D and Katz-Jaffe MG: Altered microRNA and gene
expression in the follicular fluid of women with polycystic ovary
syndrome. J Assist Reprod Genet. 31:355–362. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Murri M, Insenser M, Fernández-Durán E,
San-Millán JL and Escobar-Morreale HF: Effects of polycystic ovary
syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21,
miRNA-27b, miRNA-103, and miRNA-155 expression. J Clin Endocrinol
Metab. 98:E1835–E1844. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ou Z, Wada T, Gramignoli R, Li S, Strom
SC, Huang M and Xie W: MicroRNA hsa-miR-613 targets the human LXRα
gene and mediates a feedback loop of LXRα autoregulation. Mol
Endocrinol. 25:584–596. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lu Y, Tang L, Zhang Q, Zhang Z and Wei W:
MicroRNA-613 inhibits the progression of gastric cancer by
targeting CDK9. Artif Cells Nanomed Biotechnol. 46:980–984. 2018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Gao R, Feng Q and Tan G: microRNA-613
exerts anti-angiogenic effect on nasopharyngeal carcinoma cells
through inactivating the AKT signaling pathway by down-regulating
FN1. Biosci Rep. 39:BSR20182196. 2019.doi: 10.1042/BSR20182196.
View Article : Google Scholar
|
28
|
Clemmons DR: Modifying IGF1 activity: An
approach to treat endocrine disorders, atherosclerosis and cancer.
Nat Rev Drug Discov. 6:821–833. 2007. View
Article : Google Scholar
|
29
|
Wang Q, Zhang F and Hong Y: Blocking of
autocrine IGF-1 reduces viability of human umbilical cord
mesenchymal stem cells via inhibition of the Akt/Gsk-3β signaling
pathway. Mol Med Rep. 17:4681–4687. 2018.PubMed/NCBI
|
30
|
Guarente L and Kenyon C: Genetic pathways
that regulate ageing in model organisms. Nature. 408:255–262. 2000.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Longo VD and Finch CE: Evolutionary
medicine: From dwarf model systems to healthy centenarians?
Science. 299:1342–1346. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tatar M, Bartke A and Antebi A: The
endocrine regulation of aging by insulin-like signals. Science.
299:1346–1351. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Anisimov VN and Bartke A: The key role of
growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit
Rev Oncol Hematol. 87:201–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bartke A: Single-gene mutations and
healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci.
366:28–34. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shi L, Liu S, Zhao W and Shi J: miR-483-5p
and miR-486-5p are down-regulated in cumulus cells of metaphase II
oocytes from women with polycystic ovary syndrome. Reprod Biomed
Online. 31:565–572. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Homburg R, Pariente C, Lunenfeld B and
Jacobs HS: The role of insulin-like growth factor-1 (IGF-1) and IGF
binding protein-1 (IGFBP-1) in the pathogenesis of polycystic ovary
syndrome. Hum Reprod. 7:1379–1383. 1992. View Article : Google Scholar : PubMed/NCBI
|