Role of Munc18-1 in the biological functions and pathogenesis of neurological disorders (Review)
- Authors:
- Fajuan Tang
- Dongqiong Xiao
- Lin Chen
- Hu Gao
- Xihong Li
-
Affiliations: Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: January 12, 2021 https://doi.org/10.3892/mmr.2021.11837
- Article Number: 198
-
Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Brose N, Brunger A, Cafiso D, Chapman ER, Diao J, Hughson FM, Jackson MB, Jahn R, Lindau M, Ma C, et al: Synaptic vesicle fusion: today and beyond. Nat Struct Mol Biol. 26:663–668. 2019. View Article : Google Scholar : PubMed/NCBI | |
Snead D and Eliezer D: Intrinsically disordered proteins in synaptic vesicle trafficking and release. J Biol Chem. 294:3325–3342. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ruete MC, Zarelli VEP, Masone D, de Paola M, Bustos DM and Tomes CN: A connection between reversible tyrosine phosphorylation and SNARE complex disassembly activity of N-ethylmaleimide-sensitive factor unveiled by the phosphomimetic mutant N-ethylmaleimide-sensitive factor-Y83E. Mol Hum Reprod. 25:344–358. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bombardier JP and Munson M: Three steps forward, two steps back: Mechanistic insights into the assembly and disassembly of the SNARE complex. Curr Opin Chem Biol. 29:66–71. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kavanagh DM, Smyth AM, Martin KJ, Dun A, Brown ER, Gordon S, Smillie KJ, Chamberlain LH, Wilson RS, Yang L, et al: A molecular toggle after exocytosis sequesters the presynaptic syntaxin1a molecules involved in prior vesicle fusion. Nat Commun. 5:57742014. View Article : Google Scholar : PubMed/NCBI | |
Jorgačevski J and Zorec R: Munc18-1, exocytotic fusion pore regulation and local membrane anisotropy. Commun Integr Biol. 5:74–77. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han GA, Malintan NT, Saw NM, Li L, Han L, Meunier FA, Collins BM and Sugita S: Munc18-1 domain-1 controls vesicle docking and secretion by interacting with syntaxin-1 and chaperoning it to the plasma membrane. Mol Biol Cell. 22:4134–4149. 2011. View Article : Google Scholar : PubMed/NCBI | |
Graham ME, Prescott GR, Johnson JR, Jones M, Walmesley A, Haynes LP, Morgan A, Burgoyne RD and Barclay JW: Structure-function study of mammalian Munc18-1 and C. elegans UNC-18 implicates domain 3b in the regulation of exocytosis. PLoS One. 6:e179992011. View Article : Google Scholar : PubMed/NCBI | |
Rizo J and Südhof TC: The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged? Annu Rev Cell Dev Biol. 28:279–308. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pons-Vizcarra M, Kurps J, Tawfik B, Sørensen JB, van Weering JRT and Verhage M: MUNC18-1 regulates the submembrane F-actin network, independently of syntaxin1 targeting, via hydrophobicity in β-sheet 10. J Cell Sci. 132:jcs2346742019.https://doi.org/10.1242/jcs.234674 View Article : Google Scholar : PubMed/NCBI | |
Hamdan FF, Piton A, Gauthier J, Lortie A, Dubeau F, Dobrzeniecka S, Spiegelman D, Noreau A, Pellerin S, Côté M, et al: De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann Neurol. 65:748–753. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deciphering Developmental Disorders Study: Prevalence and architecture of de novo mutations in developmental disorders. Nature. 542:433–438. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weckhuysen S, Holmgren P, Hendrickx R, Jansen AC, Hasaerts D, Dielman C, de Bellescize J, Boutry-Kryza N, Lesca G, Von Spiczak S, et al: Reduction of seizure frequency after epilepsy surgery in a patient with STXBP1 encephalopathy and clinical description of six novel mutation carriers. Epilepsia. 54:e74–e80. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kovacevic J, Maroteaux G, Schut D, Loos M, Dubey M, Pitsch J, Remmelink E, Koopmans B, Crowley J, Cornelisse LN, et al: Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain. 141:1350–1374. 2018. View Article : Google Scholar : PubMed/NCBI | |
Eisemann TJ, Allen F, Lau K, Shimamura GR, Jeffrey PD and Hughson FM: The Sec1/Munc18 protein Vps45 holds the Qa-SNARE Tlg2 in an open conformation. eLife. 9:e607242020. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Shin J, Jung Y, Son H, Shin J, Jeong C, Kweon DH and Shin YK: Munc18-1 induces conformational changes of syntaxin-1 in multiple intermediates for SNARE assembly. Sci Rep. 10:116232020. View Article : Google Scholar : PubMed/NCBI | |
Romaniello R, Saettini F, Panzeri E, Arrigoni F, Bassi MT and Borgatti R: A de-novo STXBP1 gene mutation in a patient showing the Rett syndrome phenotype. Neuroreport. 26:254–257. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gil-Pisa I, Munarriz-Cuezva E, Ramos-Miguel A, Urigüen L, Meana JJ and García-Sevilla JA: Regulation of munc18-1 and syntaxin-1A interactive partners in schizophrenia prefrontal cortex: Down-regulation of munc18-1a isoform and 75 kDa SNARE complex after antipsychotic treatment. Int J Neuropsychopharmacol. 15:573–588. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ramos-Miguel A, Beasley CL, Dwork AJ, Mann JJ, Rosoklija G, Barr AM and Honer WG: Increased SNARE Protein-Protein Interactions in Orbitofrontal and Anterior Cingulate Cortices in Schizophrenia. Biological Psychiatry. 78:361–373. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C, Bacaj T and Südhof TC: Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J. 32:159–171. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Zhang Z, Cheng K, Wu Q, Jiang L, Pielak GJ, Liu M and Li C: Membrane-mediated disorder-to-order transition of SNAP25 flexible linker facilitates its interaction with syntaxin-1 and SNARE-complex assembly. FASEB J. 33:7985–7994. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sitarska E, Xu J, Park S, Liu X, Quade B, Stepien K, Sugita K, Brautigam CA, Sugita S and Rizo J: Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion. eLife. 6:e242782017. View Article : Google Scholar : PubMed/NCBI | |
Lee YI, Kim YG, Pyeon HJ, Ahn JC, Logan S, Orock A, Joo KM, Lőrincz A and Deák F: Dysregulation of the SNARE-binding protein Munc18-1 impairs BDNF secretion and synaptic neurotransmission: A novel interventional target to protect the aging brain. Geroscience. 41:109–123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Lee J, Rowland K, Wen Y, Hua H, Carlson N, Lavania S, Parrish JZ and Kim MD: Regulation of dendrite growth and maintenance by exocytosis. J Cell Sci. 128:4279–4292. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Pittà M, Brunel N and Volterra A: Astrocytes: Orchestrating synaptic plasticity? Neuroscience. 323:43–61. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lammertse HCA, van Berkel AA, Iacomino M, Toonen RF, Striano P, Gambardella A, Verhage M and Zara F: Homozygous STXBP1 variant causes encephalopathy and gain-of-function in synaptic transmission. Brain. 143:441–451. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meijer M, Cijsouw T, Toonen RF and Verhage M: Synaptic effects of Munc18-1 alternative splicing in excitatory hippocampal neurons. PLoS One. 10:e01389502015. View Article : Google Scholar : PubMed/NCBI | |
Orock A, Logan S and Deak F: Munc18-1 haploinsufficiency impairs learning and memory by reduced synaptic vesicular release in a model of Ohtahara syndrome. Mol Cell Neurosci. 88:33–42. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang CC, Weyrer C, Paturu M, Fioravante D and Regehr WG: Calcium-dependent protein kinase C is not required for post-tetanic potentiation at the hippocampal CA3 to CA1 synapse. J Neurosci. 36:6393–6402. 2016. View Article : Google Scholar : PubMed/NCBI | |
Galván EJ, Cosgrove KE, Mauna JC, Card JP, Thiels E, Meriney SD and Barrionuevo G: Critical involvement of postsynaptic protein kinase activation in long-term potentiation at hippocampal mossy fiber synapses on CA3 interneurons. J Neurosci. 30:2844–2855. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barclay JW, Craig TJ, Fisher RJ, Ciufo LF, Evans GJ, Morgan A and Burgoyne RD: Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis. J Biol Chem. 278:10538–10545. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wierda KD, Toonen RF, de Wit H, Brussaard AB and Verhage M: Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron. 54:275–290. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cijsouw T, Weber JP, Broeke JH, Broek JA, Schut D, Kroon T, Saarloos I, Verhage M and Toonen RF: Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner. J Cell Biol. 204:759–775. 2014. View Article : Google Scholar : PubMed/NCBI | |
de Jong AP, Meijer M, Saarloos I, Cornelisse LN, Toonen RF, Sørensen JB and Verhage M: Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proc Natl Acad Sci USA. 113:5095–5100. 2016. View Article : Google Scholar : PubMed/NCBI | |
Genc O, Kochubey O, Toonen RF, Verhage M and Schneggenburger R: Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release. eLife. 3:e017152014. View Article : Google Scholar : PubMed/NCBI | |
Hamada N, Iwamoto I, Tabata H and Nagata KI: MUNC18-1 gene abnormalities are involved in neurodevelopmental disorders through defective cortical architecture during brain development. Acta Neuropathol Commun. 5:922017. View Article : Google Scholar : PubMed/NCBI | |
Lang H, Ai Z, You Z, Wan Y, Guo W, Xiao J and Jin X: Characterization of miR-218/322-Stxbp1 pathway in the process of insulin secretion. J Mol Endocrinol. 54:65–73. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oh E, Kalwat MA, Kim MJ, Verhage M and Thurmond DC: Munc18-1 regulates first-phase insulin release by promoting granule docking to multiple syntaxin isoforms. J Biol Chem. 287:25821–25833. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Wang F, Yang QG, Jiang W, Wang C, Chen YP and Chen GH: Reduced thyroid hormones with increased hippocampal SNAP-25 and Munc18-1 might involve cognitive impairment during aging. Behav Brain Res. 229:131–137. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Jiang W, Wang F, Yang QG, Wang C, Chen YP and Chen GH: The reduced serum free triiodothyronine and increased dorsal hippocampal SNAP-25 and Munc18-1 had existed in middle-aged CD-1 mice with mild spatial cognitive impairment. Brain Res. 1540:9–20. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zevenbergen C, Groeneweg S, Swagemakers SMA, de Jong A, Medici-Van den Herik E, Rispens M, Klootwijk W, Medici M, de Rijke YB, Meima ME, et al: Functional analysis of genetic variation in the SECIS element of thyroid hormone activating type 2 deiodinase. J Clin Endocrinol Metab. 104:1369–1377. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grone BP, Marchese M, Hamling KR, Kumar MG, Krasniak CS, Sicca F, Santorelli FM, Patel M and Baraban SC: Epilepsy, behavioral abnormalities, and physiological comorbidities in syntaxin-binding protein 1 (STXBP1) mutant Zebrafish. PLoS One. 11:e01511482016. View Article : Google Scholar : PubMed/NCBI | |
Ortega-Moreno L, Giráldez BG, Verdú A, García-Campos O, Sánchez-Martín G, Serratosa JM and Guerrero-López R: Novel mutation in STXBP1 gene in a patient with non-lesional Ohtahara syndrome. Neurologia. 31:523–527. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dachtler J, Ivorra JL, Rowland TE, Lever C, Rodgers RJ and Clapcote SJ: Heterozygous deletion of α-neurexin I or α-neurexin II results in behaviors relevant to autism and schizophrenia. Behav Neurosci. 129:765–776. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dachtler J, Glasper J, Cohen RN, Ivorra JL, Swiffen DJ, Jackson AJ, Harte MK, Rodgers RJ and Clapcote SJ: Deletion of α-neurexin II results in autism-related behaviors in mice. Transl Psychiatry. 4:e4842014. View Article : Google Scholar : PubMed/NCBI | |
Behan AT, Byrne C, Dunn MJ, Cagney G and Cotter DR: Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry. 14:601–613. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lanoue V, Chai YJ, Brouillet JZ, Weckhuysen S, Palmer EE, Collins BM and Meunier FA: STXBP1 encephalopathy: Connecting neurodevelopmental disorders with α-synucleinopathies? Neurology. 93:114–123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Linker RA, Brechlin P, Jesse S, Steinacker P, Lee DH, Asif AR, Jahn O, Tumani H, Gold R and Otto M: Proteome profiling in murine models of multiple sclerosis: Identification of stage specific markers and culprits for tissue damage. PLoS One. 4:e76242009. View Article : Google Scholar : PubMed/NCBI | |
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D and Ohlendieck K: Label-free mass spectrometric analysis reveals complex changes in the brain proteome from the mdx-4cv mouse model of Duchenne muscular dystrophy. Clin Proteomics. 12:272015. View Article : Google Scholar : PubMed/NCBI | |
Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M, Zhao C, Xin W, Barone R, Sims KB, et al: Proteomic analysis of brain and cerebrospinal fluid from the three major forms of neuronal ceroid lipofuscinosis reveals potential biomarkers. J Proteome Res. 16:3787–3804. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshé SL, et al: ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 58:512–521. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hunter MB, Yoong M, Sumpter RE, Verity K, Shetty J, McLellan A, Jones J, Quigley A, Tallur KK and Chin RFM: Neurobehavioral problems in children with early-onset epilepsy: A population-based study. Epilepsy Behav. 93:87–93. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mercimek-Mahmutoglu S, Patel J, Cordeiro D, Hewson S, Callen D, Donner EJ, Hahn CD, Kannu P, Kobayashi J, Minassian BA, et al: Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia. 56:707–716. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Wang L, Cai XT, Zhou H, Yu D and Wang Z: Therapeutic benefits of ACTH and levetiracetam in STXBP1 encephalopathy with a de novo mutation: A case report and literature review. Medicine (Baltimore). 97:e06632018. View Article : Google Scholar : PubMed/NCBI | |
Li T, Cheng M, Wang J, Hong S, Li M, Liao S, Xie L and Jiang L: De novo mutations of STXBP1 in Chinese children with early onset epileptic encephalopathy. Genes Brain Behav. 17:e124922018. View Article : Google Scholar : PubMed/NCBI | |
Stamberger H, Weckhuysen S and De Jonghe P: STXBP1 as a therapeutic target for epileptic encephalopathy. Expert Opin Ther Targets. 21:1027–1036. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dilena R, Striano P, Traverso M, Viri M, Cristofori G, Tadini L, Barbieri S, Romeo A and Zara F: Dramatic effect of levetiracetam in early-onset epileptic encephalopathy due to STXBP1 mutation. Brain Dev. 38:128–131. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, Uruno K, Kumada S, Nishiyama K, Nishimura A, et al: De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 40:782–788. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Kim SH, Kim B, Lee ST, Choi JR, Kim HD, Lee JS and Kang HC: Genetic diagnosis and clinical characteristics by etiological classification in early-onset epileptic encephalopathy with burst suppression pattern. Epilepsy Res. 163:1063232020. View Article : Google Scholar : PubMed/NCBI | |
Mitta N, Menon RN, McTague A, Radhakrishnan A, Sundaram S, Cherian A, Madhavilatha GK, Mannan AU, Nampoothiri S and Thomas SV: Genotype-phenotype correlates of infantile-onset developmental & epileptic encephalopathy syndromes in South India: A single centre experience. Epilepsy Res. 166:1063982020. View Article : Google Scholar : PubMed/NCBI | |
Di Meglio C, Lesca G, Villeneuve N, Lacoste C, Abidi A, Cacciagli P, Altuzarra C, Roubertie A, Afenjar A, Renaldo-Robin F, et al: Epileptic patients with de novo STXBP1 mutations: Key clinical features based on 24 cases. Epilepsia. 56:1931–1940. 2015. View Article : Google Scholar : PubMed/NCBI | |
Otsuka M, Oguni H, Liang JS, Ikeda H, Imai K, Hirasawa K, Imai K, Tachikawa E, Shimojima K, Osawa M, et al: STXBP1 mutations cause not only Ohtahara syndrome but also West syndrome--result of Japanese cohort study. Epilepsia. 51:2449–2452. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boutry-Kryza N, Labalme A, Ville D, de Bellescize J, Touraine R, Prieur F, Dimassi S, Poulat AL, Till M, Rossi M, et al: Molecular characterization of a cohort of 73 patients with infantile spasms syndrome. Eur J Med Genet. 58:51–58. 2015. View Article : Google Scholar : PubMed/NCBI | |
Steel D, Symonds JD, Zuberi SM and Brunklaus A: Dravet syndrome and its mimics: Beyond SCN1A. Epilepsia. 58:1807–1816. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mastrangelo M: Lennox-Gastaut Syndrome: A state of the art review. Neuropediatrics. 48:143–151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuge K, Iwama K, Yonee C, Matsufuji M, Sano N, Saikusa T, Yae Y, Yamashita Y, Mizuguchi T, Matsumoto N, et al: A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl. Brain Dev. 40:493–497. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Lin X, Wang M, Hu Y, Xue K, Gu S, Lv L, Huang S and Xie W: Potential role of genomic imprinted genes and brain developmental related genes in autism. BMC Med Genomics. 13:542020. View Article : Google Scholar : PubMed/NCBI | |
Stamberger H, Nikanorova M, Willemsen MH, Accorsi P, Angriman M, Baier H, Benkel-Herrenbrueck I, Benoit V, Budetta M, Caliebe A, et al: STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy. Neurology. 86:954–962. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, Ju J, Mei J, Shi Y, He M, et al: Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 93:249–263. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dudanova I, Tabuchi K, Rohlmann A, Südhof TC and Missler M: Deletion of α-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. J Comp Neurol. 502:261–274. 2007. View Article : Google Scholar : PubMed/NCBI | |
Toonen RF, Wierda K, Sons MS, de Wit H, Cornelisse LN, Brussaard A, Plomp JJ and Verhage M: Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size. Proc Natl Acad Sci USA. 103:18332–18337. 2006. View Article : Google Scholar : PubMed/NCBI | |
7Chamma I, Sainlos M and Thoumine O: Biophysical mechanisms underlying the membrane trafficking of synaptic adhesion molecules. Neuropharmacology. 169:1075552020. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto H, Shimohata A, Abe M, Abe T, Mazaki E, Amano K, Suzuki T, Tatsukawa T, Itohara S, Sakimura K, et al: Potentiation of excitatory synaptic transmission ameliorates aggression in mice with Stxbp1 haploinsufficiency. Hum Mol Genet. 26:4961–4974. 2017. View Article : Google Scholar : PubMed/NCBI | |
Valton V, Romaniuk L, Douglas Steele J, Lawrie S and Seriès P: Comprehensive review: Computational modelling of schizophrenia. Neurosci Biobehav Rev. 83:631–646. 2017. View Article : Google Scholar : PubMed/NCBI | |
Urigüen L, Gil-Pisa I, Munarriz-Cuezva E, Berrocoso E, Pascau J, Soto-Montenegro ML, Gutiérrez-Adán A, Pintado B, Madrigal JL, Castro E, et al: Behavioral, neurochemical and morphological changes induced by the overexpression of munc18-1a in brain of mice: Relevance to schizophrenia. Transl Psychiatry. 3:e2212013. View Article : Google Scholar : PubMed/NCBI | |
Kim ST, Moon W, Chae Y, Kim YJ, Lee H and Park HJ: The effect of electroaucpuncture for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced proteomic changes in the mouse striatum. J Physiol Sci. 60:27–34. 2010. View Article : Google Scholar : PubMed/NCBI | |
Burré J, Sharma M and Südhof TC: Cell biology and pathophysiology of α-synuclein. Cold Spring Harb Perspect Med. 8:a0240912018. View Article : Google Scholar : PubMed/NCBI | |
Lanoue V, Chai YJ, Brouillet JZ, Weckhuysen S, Palmer EE, Collins BM and Meunier FA: STXBP1 encephalopathy: Connecting neurodevelopmental disorders with alpha-synucleinopathies? Neurology. 93:114–123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang CC, Chiu TY, Lee TY, Hsieh HJ, Lin CC and Kao LS: Soluble α-synuclein facilitates priming and fusion by releasing Ca2+ from the thapsigargin-sensitive Ca2+ pool in PC12 cells. J Cell Sci. 131:jcs2130172018.https://doi.org/10.1242/jcs.213017 View Article : Google Scholar : PubMed/NCBI | |
Chai YJ, Sierecki E, Tomatis VM, Gormal RS, Giles N, Morrow IC, Xia D, Götz J, Parton RG, Collins BM, et al: Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. J Cell Biol. 214:705–718. 2016. View Article : Google Scholar : PubMed/NCBI | |
Braidy N, Essa MM, Poljak A, Selvaraju S, Al-Adawi S, Manivasagm T, Thenmozhi AJ, Ooi L, Sachdev P and Guillemin GJ: Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer's disease. Oncotarget. 7:64589–64604. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ramos-Miguel A, Hercher C, Beasley CL, Barr AM, Bayer TA, Falkai P, Leurgans SE, Schneider JA, Bennett DA and Honer WG: Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol Neurodegener. 10:652015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Hao W, Qin Y, Decker Y, Wang X, Burkart M, Schötz K, Menger MD, Fassbender K and Liu Y: Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer's disease. Brain Behav Immun. 46:121–131. 2015. View Article : Google Scholar : PubMed/NCBI | |
Donovan LE, Higginbotham L, Dammer EB, Gearing M, Rees HD, Xia Q, Duong DM, Seyfried NT, Lah JJ and Levey AI: Analysis of a membrane-enriched proteome from postmortem human brain tissue in Alzheimer's disease. Proteomics Clin Appl. 6:201–211. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto N, Maki T, Shindo A, Liang AC, Maeda M, Egawa N, Itoh K, Lo EK, Lok J, Ihara M, et al: Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J Neurosci. 35:14002–14008. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deiva K: Pediatric onset multiple sclerosis. Rev Neurol (Paris). 176:30–36. 2020. View Article : Google Scholar : PubMed/NCBI | |
Werner P, Pitt D and Raine CS: Glutamate excitotoxicity--a mechanism for axonal damage and oligodendrocyte death in Multiple Sclerosis? J Neural Transm Suppl. 60:375–385. 2000. | |
Doorenweerd N, Dumas EM, Ghariq E, Schmid S, Straathof CS, Roest AA, Wokke BH, van Zwet EW, Webb AG, Hendriksen JG, et al: Decreased cerebral perfusion in Duchenne muscular dystrophy patients. Neuromuscul Disord. 27:29–37. 2017. View Article : Google Scholar : PubMed/NCBI |