1
|
Gruzman A, Babai G and Sasson S: Adenosine
monophosphate-activated protein kinase (AMPK) as a new target for
antidiabetic drugs: A review on metabolic, pharmacological and
chemical considerations. Rev Diabet Stud. 6:13–36. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Daskalopoulos EP, Dufeys C, Bertrand L,
Beauloye C and Horman S: AMPK in cardiac fibrosis and repair:
Actions beyond metabolic regulation. J Mol Cell Cardiol.
91:188–200. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shirwany NA and Zou MH: AMPK: A cellular
metabolic and redox sensor. A minireview. Front Biosci (Landmark
Ed). 19:447–474. 2014. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Gejjalagere Honnappa C and Mazhuvancherry
Kesavan U: A concise review on advances in development of small
molecule anti-inflammatory therapeutics emphasising AMPK: An
emerging target. Int J Immunopathol Pharmacol. 29:562–571. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim J, Yang G, Kim Y, Kim J and Ha J: AMPK
activators: Mechanisms of action and physiological activities. Exp
Mol Med. 48:e2242016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Plews RL, Mohd Yusof A, Wang C, Saji M,
Zhang X, Chen CS, Ringel MD and Phay JE: A novel dual AMPK
activator/mTOR inhibitor inhibits thyroid cancer cell growth. J
Clin Endocrinol Metab. 100:E748–E756. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Law BY, Mok SW, Chan WK, Xu SW, Wu AG, Yao
XJ, Wang JR, Liu L and Wong VK: Hernandezine, a novel AMPK
activator induces autophagic cell death in drug-resistant cancers.
Oncotarget. 7:8090–8104. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Grahame Hardie D: Regulation of
AMP-activated protein kinase by natural and synthetic activators.
Acta Pharm Sin B. 6:1–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Polekhina G, Gupta A, Michell BJ, van
Denderen B, Murthy S, Feil SC, Jennings IG, Campbell DJ, Witters
LA, Parker MW, et al: AMPK beta subunit targets metabolic stress
sensing to glycogen. Curr Biol. 13:867–871. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lefort N, St-Amand E, Morasse S, Côté CH
and Marette A: The alpha-subunit of AMPK is essential for
submaximal contraction-mediated glucose transport in skeletal
muscle in vitro. Am J Physiol Endocrinol Metab. 295:E1447–E1454.
2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Day P, Sharff A, Parra L, Cleasby A,
Williams M, Hörer S, Nar H, Redemann N, Tickle I and Yon J:
Structure of a CBS-domain pair from the regulatory gamma1 subunit
of human AMPK in complex with AMP and ZMP. Acta Crystallogr D Biol
Crystallogr. 63(Pt 5):587–596. 2007. View Article : Google Scholar
|
12
|
Hardie DG, Ross FA and Hawley SA: AMPK: A
nutrient and energy sensor that maintains energy homeostasis. Nat
Rev Mol Cell Biol. 13:251–262. 2012. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Gowans GJ, Hawley SA, Ross FA and Hardie
DG: AMP is a true physiological regulator of AMP-activated protein
kinase by both allosteric activation and enhancing net
phosphorylation. Cell Metab. 18:556–566. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xiao B, Sanders MJ, Carmena D, Bright NJ,
Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, et
al: Structural basis of AMPK regulation by small molecule
activators. Nat Commun. 4:30172013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zadra G, Photopoulos C, Tyekucheva S,
Heidari P, Weng QP, Fedele G, Liu H, Scaglia N, Priolo C, Sicinska
E, et al: A novel direct activator of AMPK inhibits prostate cancer
growth by blocking lipogenesis. EMBO Mol Med. 6:519–538. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Newman DJ and Cragg GM: Natural products
as sources of new drugs over the nearly four decades from 01/1981
to 09/2019. J Nat Prod. 83:770–803. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang T, Ruan J, Li X, Chao L, Shi P, Han
L, Zhang Y and Wang T: Bioactive cyclolanstane-type saponins from
the stems of Astragalus membranaceus (Fisch.) Bge. var. mongholicus
(Bge.) Hsiao. J Nat Med. 70:198–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang Y, Chao L, Ruan J, Zheng C, Yu H, Qu
L, Han L and Wang T: Bioactive constituents from the rhizomes of
Dioscorea septemloba, Thunb. Fitoterapia. 115:165–172. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Nakamura S, Nakashima S, Wang T,
Yoshikawa M and Matsuda H: Chemical structures of constituents from
the seeds of Cassia auriculata. Tetrahedron. 71:6727–6732. 2015.
View Article : Google Scholar
|
20
|
Zhang Y, Han L, Ge D, Liu X, Liu E, Wu C,
Gao X and Wang T: Isolation, structural elucidation, MS profiling,
and evaluation of triglyceride accumulation inhibitory effects of
benzophenone C-glucosides from, leaves of mangifera indica L. J
Agric Food Chem. 61:1884–1895. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ
and Park OJ: Curcumin exerts antidifferentiation effect through
AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory
effect through AMPKalpha-COX-2 in cancer cells. J Agric Food Chem.
57:305–310. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu Z, Cui C, Xu P, Dang R, Cai H, Liao D,
Yang M, Feng Q, Yan X and Jiang P: Curcumin activates AMPK pathway
and regulates lipid metabolism in rats following prolonged
clozapine exposure. Front Neurosci. 11:5582017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Price NL, Gomes AP, Ling AJ, Duarte FV,
Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro
JS, et al: SIRT1 is required for AMPK activation and the beneficial
effects of resveratrol on mitochondrial function. Cell Metab.
15:675–690. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jin Y, Liu S, Ma Q, Xiao D and Chen L:
Berberine enhances the AMPK activation and autophagy and mitigates
high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol.
794:106–114. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim SG, Kim JR and Choi HC:
Quercetin-induced AMP-activated protein kinase activation
attenuates vasoconstriction through LKB1-AMPK signaling pathway. J
Med Food. 21:146–153. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Han YH, Kee JY, Park J, Kim HL, Jeong MY,
Kim DS, Jeon YD, Jung Y, Youn DH, Kang J, et al: Arctigenin
inhibits adipogenesis by inducing AMPK activation and reduces
weight gain in high-fat diet-induced obese mice. J Cell Biochem.
117:2067–2077. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu G, Robertson DH, Brooks CL III and
Vieth M: Detailed analysis of grid-based molecular docking: A case
study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput
Chem. 24:1549–1562. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Patel Y, Gillet VJ, Bravi G and Leach AR:
A comparison of the pharmacophore identification programs:
Catalyst, DISCO and GASP. J Comput Aided Mol Des. 16:653–681. 2002.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang Y, Liu X, Han L, Gao X, Liu E and
Wang T: Regulation of lipid and glucose homeostasis by mango tree
leaf extract is mediated by AMPK and PI3K/AKT signaling pathways.
Food Chem. 141:2896–2905. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Potunuru UR, Priya KV, Varsha MKNS, Mehta
N, Chandel S, Manoj N, Raman T, Ramar M, Gromiha MM and Dixit M:
Amarogentin, a secoiridoid glycoside, activates AMP-activated
protein kinase (AMPK) to exert beneficial vasculo-metabolic
effects. Biochim Biophys Acta Gen Subj. 1863:1270–1282. 2019.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Mok SWF, Zeng W, Niu Y, Coghi P, Wu Y, Sin
WM, Ng SI, Gordillo-Martínez F, Gao JY, Law BYK, et al: A method
for rapid screening of anilide-containing AMPK modulators based on
computational docking and biological validation. Front Pharmacol.
9:7102018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hwang JT, Park OJ, Lee YK, Sung MJ, Hur
HJ, Kim MS, Ha JH and Kwon DY: Anti-tumor effect of luteolin is
accompanied by AMP-activated protein kinase and nuclear factor-KB
modulation in HepG2 hepatocarcinoma cells. Int J Mol Med. 28:25–31.
2011.PubMed/NCBI
|
33
|
Bae UJ, Park J, Park IW, Chae BM, Oh MR,
Jung SJ, Ryu GS, Chae SW and Park BH:
Epigallocatechin-3-Gallate-rich green tea extract ameliorates fatty
liver and weight gain in mice fed a high fat diet by activating the
sirtuin 1 and AMP activating protein kinase pathway. Am J Chin Med.
46:617–632. 2018. View Article : Google Scholar : PubMed/NCBI
|