Ferroptosis in hepatic ischemia‑reperfusion injury: Regulatory mechanisms and new methods for therapy (Review)
- Authors:
- Linfeng Luo
- Guoheng Mo
- Deqiang Huang
-
Affiliations: Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: January 24, 2021 https://doi.org/10.3892/mmr.2021.11864
- Article Number: 225
This article is mentioned in:
Abstract
Dickson KB and Zhou J: Role of reactive oxygen species and iron in host defence against infection. Front Biosci (Landmark Ed). 25:1600–1616. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI | |
Valko M, Jomova K, Rhodes CJ, Kuča K and Musílek K: Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 90:1–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Macías-Rodríguez RU, Inzaugarat ME, Ruiz-Margáin A, Nelson LJ, Trautwein C and Cubero FJ: Reclassifying hepatic cell death during liver damage: Ferroptosis-A novel form of non-apoptotic cell death? Int J Mol Sci. 21:16512020. View Article : Google Scholar | |
Yamada N, Karasawa T, Wakiya T, Sadatomo A, Ito H, Kamata R, Watanabe S, Komada T, Kimura H, Sanada Y, et al: Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis. Am J Transplant. 20:1606–1618. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ploeg RJ, D'Alessandro AM, Knechtle SJ, Stegall MD, Pirsch JD, Hoffmann RM, Sasaki T, Sollinger HW, Belzer FO and Kalayoglu M: Risk factors for primary dysfunction after liver transplantation-a multivariate analysis. Transplantation. 55:807–813. 1993. View Article : Google Scholar : PubMed/NCBI | |
Zhai Y, Petrowsky H, Hong JC, Busuttil RW and Kupiec-Weglinski JW: Ischaemia-reperfusion injury in liver transplantation-from bench to bedside. Nat Rev Gastroenterol Hepatol. 10:79–89. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ikeda T, Yanaga K, Kishikawa K, Kakizoe S, Shimada M and Sugimachi K: Ischemic injury in liver transplantation: Difference in injury sites between warm and cold ischemia in rats. Hepatology. 16:454–461. 1992. View Article : Google Scholar : PubMed/NCBI | |
Cannistra M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, Naso A, Grande R, Serra R and Nardo B: Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg. 33 (Suppl 1):S57–S70. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhai Y, Busuttil RW and Kupiec-Weglinski JW: Liver ischemia and reperfusion injury: New insights into mechanisms of innate-adaptive immune-mediated tissue inflammation. Am J Transplant. 11:1563–1569. 2011. View Article : Google Scholar : PubMed/NCBI | |
Duarte S, Shen XD, Fondevila C, Busuttil RW and Coito AJ: Fibronectin-α4β1 interactions in hepatic cold ischemia and reperfusion injury: Regulation of MMP-9 and MT1-MMP via the p38 MAPK pathway. Am J Transplant. 12:2689–2699. 2012. View Article : Google Scholar : PubMed/NCBI | |
Decuypere JP, Ceulemans LJ, Agostinis P, Monbaliu D, Naesens M, Pirenne J and Jochmans I: Autophagy and the Kidney: Implications for ischemia-reperfusion injury and therapy. Am J Kidney Dis. 66:699–709. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pu T, Liao XH, Sun H, Guo H, Jiang X, Peng JB, Zhang L and Liu Q: Augmenter of liver regeneration regulates autophagy in renal ischemia-reperfusion injury via the AMPK/mTOR pathway. Apoptosis. 22:955–969. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Xiao Q, Liu Z, Wang W, Lai CH, Yang W, Yue P, Ye Q and Xiao J: TAK242 suppresses the TLR4 signaling pathway and ameliorates DCD liver IRI in rats. Mol Med Rep. 20:2101–2110. 2019.PubMed/NCBI | |
Oliveira THC, Marques PE, Proost P and Teixeira MMM: Neutrophils: A cornerstone of liver ischemia and reperfusion injury. Lab Invest. 98:51–62. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang Z, Li M, Wang F, Jia Y, Zhang F, Shao J, Chen A and Zheng S: P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. Iubmb Life. 71:45–56. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Tan J, Miao Y, Lei P and Zhang Q: ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 35:615–621. 2015. View Article : Google Scholar : PubMed/NCBI | |
Datta G, Fuller BJ and Davidson BR: Molecular mechanisms of liver ischemia reperfusion injury: Insights from transgenic knockout models. World J Gastroenterol. 19:1683–1698. 2013. View Article : Google Scholar : PubMed/NCBI | |
Papadopoulos D, Siempis T, Theodorakou E and Tsoulfas G: Hepatic ischemia and reperfusion injury and trauma: Current concepts. Arch Trauma Res. 2:63–70. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dhanasekaran DN and Reddy EP: JNK signaling in apoptosis. Oncogene. 27:6245–6251. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wanner GA, Ertel W, Muller P, Hofer Y, Leiderer R, Menger MD and Messmer K: Liver ischemia and reperfusion induces a systemic inflammatory response through Kupffer cell activation. Shock. 5:34–40. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lentsch AB, Yoshidome H, Kato A, Warner RL, Cheadle WG, Ward PA and Edwards MJ: Requirement for interleukin-12 in the pathogenesis of warm hepatic ischemia/reperfusion injury in mice. Hepatology. 30:1448–1453. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jaeschke H: Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol. 15:718–724. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Zwacka RM and Engelhardt JF: Therapeutic approaches for ischemia/reperfusion injury in the liver. J Mol Med (Berl). 77:577–592. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bauer M and Bauer I: Heme oxygenase-1: Redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal. 4:749–758. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rensing H, Jaeschke H, Bauer I, Patau C, Datene V, Pannen BH and Bauer M: Differential activation pattern of redox-sensitive transcription factors and stress-inducible dilator systems heme oxygenase-1 and inducible nitric oxide synthase in hemorrhagic and endotoxic shock. Crit Care Med. 29:1962–1971. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jaeschke H, Ho YS, Fisher MA, Lawson JA and Farhood A: Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: Importance of an intracellular oxidant stress. Hepatology. 29:443–450. 1999. View Article : Google Scholar : PubMed/NCBI | |
Essani NA, Fisher MA and Jaeschke H: Inhibition of NF-kappa B activation by dimethyl sulfoxide correlates with suppression of TNF-alpha formation, reduced ICAM-1 gene transcription, and protection against endotoxin-induced liver injury. Shock. 7:90–96. 1997. View Article : Google Scholar : PubMed/NCBI | |
Li JM and Shah AM: Differential NADPH-versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase. Cardiovasc Res. 52:477–486. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ozaki M, Deshpande SS, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC, Goldschmidt-Clermont PJ and Irani K: Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J. 14:418–429. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Qian L and Yuan J: Small molecule probes for cellular death machines. Curr Opin Chem Biol. 39:74–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Degterev A and Linkermann A: Generation of small molecules to interfere with regulated necrosis. Cell Mol Life Sci. 73:2251–2267. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pignatello JJ, Oliveros E and MacKay A: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. J Crit Rev Environmental Sci Technol. 36:1–84. 2006. View Article : Google Scholar | |
Wang H, An P, Xie E, Wu Q, Fang X, Gao H, Zhang Z, Li Y, Wang X, Zhang J, et al: Characterization of ferroptosis in murine models of hemochromatosis. Hepatology. 66:449–465. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L and Tang D: HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 34:5617–5625. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Zheng C, Zhang Y, Chang YZ, Qian ZM and Shen X: Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake. Int J Biochem Cell Biol. 38:1402–1416. 2006. View Article : Google Scholar : PubMed/NCBI | |
Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C and Diaz-Latoud C: Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal. 7:414–422. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lei P, Bai T and Sun Y: Mechanisms of ferroptosis and relations with regulated cell death: A review. Front Physiol. 10:1392019. View Article : Google Scholar : PubMed/NCBI | |
Krieg P and Furstenberger G: The role of lipoxygenases in epidermis. Biochim Biophys Acta. 1841:390–400. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haeggstrom JZ and Funk CD: Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem Rev. 111:5866–5898. 2011. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Chon JK, Kim S and Shin W: Conformational flexibility in mammalian 15S-lipoxygenase: Reinterpretation of the crystallographic data. Proteins. 70:1023–1032. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S: Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reddy PH and Beal MF: Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res Brain Res Rev. 49:618–632. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ademowo OS, Dias HKI, Burton DGA and Griffiths HR: Lipid (per) oxidation in mitochondria: An emerging target in the ageing process? Biogerontology. 18:859–879. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP and Monticelli L: Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study. Biophys J. 93:4225–4236. 2007. View Article : Google Scholar : PubMed/NCBI | |
Simoncini C, Orsucci D, Caldarazzo Ienco E, Siciliano G, Bonuccelli U and Mancuso M: Alzheimer's pathogenesis and its link to the mitochondrion. Oxid Med Cell Longev. 2015:8039422015. View Article : Google Scholar : PubMed/NCBI | |
Eckl PM, Ortner A and Esterbauer H: Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes. Mutat Res. 290:183–192. 1993. View Article : Google Scholar : PubMed/NCBI | |
Siems W and Grune T: Intracellular metabolism of 4-hydroxynonenal. Mol Aspects Med. 24:167–175. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Friedmann AJ, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI | |
Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A and Stockwell BR: Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 136:4551–4556. 2014. View Article : Google Scholar : PubMed/NCBI | |
Friedmann AJ, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA and Joosten LA: Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 33:49–77. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kiziltas S: Toll-like receptors in pathophysiology of liver diseases. World J Hepatol. 8:1354–1369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Yoshimura K, Aoki H, Tsutsui H, Noda T, et al: Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm. Arterioscler Thromb Vasc Biol. 35:127–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Hida S, Sagara J, Taniguchi S and Takahashi M: Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun. 425:162–168. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, et al: Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 123:594–604. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sadatomo A, Inoue Y, Ito H, Karasawa T, Kimura H, Watanabe S, Mizushina Y, Nakamura J, Kamata R, Kasahara T, et al: Interaction of neutrophils with macrophages promotes IL-1β maturation and contributes to hepatic ischemia-reperfusion injury. J Immunol. 199:3306–3315. 2017. View Article : Google Scholar : PubMed/NCBI | |
Skaar EP: The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 6:e10009492010. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Harrington L, Trebicka E, Shi HN, Kagan JC, Hong CC, Lin HY, Babitt JL and Cherayil BJ: Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. J Clin Invest. 119:3322–3328. 2009.PubMed/NCBI | |
Weiss G, Werner-Felmayer G, Werner ER, Grunewald K, Wachter H and Hentze MW: Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med. 180:969–976. 1994. View Article : Google Scholar : PubMed/NCBI | |
Bubici C, Papa S, Dean K and Franzoso G: Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: Molecular basis and biological significance. Oncogene. 25:6731–6748. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ganz T and Nemeth E: Hepcidin and iron homeostasis. Biochim Biophys Acta. 1823:1434–1443. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wunderer F, Traeger L, Sigurslid HH, Meybohm P, Bloch DB and Malhotra R: The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol Res. 153:1046642020. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jornot L, Petersen H and Junod AF: Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions. Biochem J. 335:85–94. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mills EM, Takeda K, Yu ZX, Ferrans V, Katagiri Y, Jiang H, Lavigne MC, Leto TL and Guroff G: Nerve growth factor treatment prevents the increase in superoxide produced by epidermal growth factor in PC12 cells. J Biol Chem. 273:22165–22168. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hurst R, Bao Y, Jemth P, Mannervik B and Williamson G: Phospholipid hydroperoxide glutathione peroxidase activity of rat class theta glutathione transferase T2-2. Biochem Soc Trans. 25:S5591997. View Article : Google Scholar : PubMed/NCBI | |
Yin GY, Yin YF and He XF: Effect of Zhuchun pill on immunity and endocrine function of elderly with kidney-yang deficiency. Zhongguo Zhong Xi Yi Jie He Za Zhi. 15:601–603. 1995.(In Chinese). PubMed/NCBI | |
Lee YJ, Galoforo SS, Berns CM, Chen JC, Davis BH, Sim JE, Corry PM and Spitz DR: Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J Biol Chem. 273:5294–5299. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB and Rhee SG: Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 272:217–221. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jaeschke H and Farhood A: Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol. 260:G355–G362. 1991.PubMed/NCBI | |
Straatsburg IH, Boermeester MA, Wolbink GJ, van Gulik TM, Gouma DJ, Frederiks WM and Hack CE: Complement activation induced by ischemia-reperfusion in humans: A study in patients undergoing partial hepatectomy. J Hepatol. 32:783–791. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bajt ML, Farhood A and Jaeschke H: Effects of CXC chemokines on neutrophil activation and sequestration in hepatic vasculature. Am J Physiol Gastrointest Liver Physiol. 281:G1188–G1195. 2001. View Article : Google Scholar : PubMed/NCBI | |
Witthaut R, Farhood A, Smith CW and Jaeschke H: Complement and tumor necrosis factor-alpha contribute to Mac-1 (CD11b/CD18) up-regulation and systemic neutrophil activation during endotoxemia in vivo. J Leukoc Biol. 55:105–111. 1994. View Article : Google Scholar : PubMed/NCBI | |
Jaeschke H, Farhood A, Bautista AP, Spolarics Z and Spitzer JJ: Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am J Physiol. 264:G801–G809. 1993.PubMed/NCBI | |
Yeh CG, Marsh HJ Jr, Carson GR, Berman L, Concino MF, Scesney SM, Kuestner RE, Skibbens R, Donahue KA and Ip SH: Recombinant soluble human complement receptor type 1 inhibits inflammation in the reversed passive arthus reaction in rats. J Immunol. 146:250–256. 1991.PubMed/NCBI | |
Weisman HF, Bartow T, Leppo MK, Marsh HJ, Carson GR, Concino MF, Boyle MP, Roux KH, Weisfeldt ML and Fearon DT: Soluble human complement receptor type 1: In vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science. 249:146–151. 1990. View Article : Google Scholar : PubMed/NCBI | |
Rymsa B, Wang JF and de Groot H: O2−. Release by activated Kupffer cells upon hypoxia-reoxygenation. Am J Physiol. 261:G602–G607. 1991.PubMed/NCBI | |
Marnett LJ: Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 424:83–95. 1999. View Article : Google Scholar : PubMed/NCBI | |
Arslan M, Metin CF, Kucuk A, Ozturk L and Yaylak F: Dexmedetomidine protects against lipid peroxidation and erythrocyte deformability alterations in experimental hepatic ischemia reperfusion injury. Libyan J Med. 7:2012.doi: 10.3402/ljm.v7i0.18185. View Article : Google Scholar : PubMed/NCBI | |
Kuypers FA: Red cell membrane damage. J Heart Valve Dis. 7:387–395. 1998.PubMed/NCBI | |
Sivilotti ML: Oxidant stress and haemolysis of the human erythrocyte. Toxicol Rev. 23:169–188. 2004. View Article : Google Scholar : PubMed/NCBI | |
Therond P, Bonnefont-Rousselot D, Davit-Spraul A, Conti M and Legrand A: Biomarkers of oxidative stress: An analytical approach. Curr Opin Clin Nutr Metab Care. 3:373–384. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stahl W, Junghans A, de Boer B, Driomina ES, Briviba K and Sies H: Carotenoid mixtures protect multilamellar liposomes against oxidative damage: Synergistic effects of lycopene and lutein. FEBS Lett. 427:305–308. 1998. View Article : Google Scholar : PubMed/NCBI | |
Beaudeux JL, Gardes-Albert M, Delattre J, Legrand A, Rousselet F and Peynet J: Resistance of lipoprotein(a) to lipid peroxidation induced by oxygenated free radicals produced by gamma radiolysis: A comparison with low-density lipoprotein. Biochem J. 314:277–284. 1996. View Article : Google Scholar : PubMed/NCBI | |
Jankowska R, Passowicz-Muszynska E, Banas T, Marcinkowska A and Medrala W: The influence of vitamin A on production of oxygen free radicals and activity of granulocyte catalase in patients with chronic bronchitis. Pneumonol Alergol Pol. 62:628–633. 1994.(In Polish). PubMed/NCBI | |
Malhi H, Guicciardi ME and Gores GJ: Hepatocyte death: A clear and present danger. Physiol Rev. 90:1165–1194. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH and Peter ME: Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO. 14:5579–5588. 1995. View Article : Google Scholar | |
Stefan JR and Guy SS: The apoptosome: Signalling platform of cell death. Nat Rev Mol Cell Bio. 8:405–413. 2007. View Article : Google Scholar | |
Yong-Ling PO, Douglas RG, Zhenyue H and Tak WM: Cytochrome c: Functions beyond respiration. Nat Rev Mol Cell Bio. 9:532–542. 2008. View Article : Google Scholar | |
Nicholas SW, Vishva D and Avi A: Death receptor signal transducers: Nodes of coordination in immune signaling networks. Nat Immunol. 10:348–355. 2009. View Article : Google Scholar : PubMed/NCBI | |
Susan E: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Krysko DV, Vanden BT, D'Herde K and Vandenabeele P: Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods. 44:205–221. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ricardo W, Andrew O, Helen MB and Douglas RG: Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ueno T and Komatsu M: Autophagy in the liver: Functions in health and disease. Nat Rev Gastroenterol Hepatol. 14:170–184. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pierre ER, Dominique CH, Richard M, Claire F, Gérard F, Didier L, Éric OD, Pierre B, Dominique V and Fran OD: Acute liver cell damage in patients with anorexia nervosa: A possible role of starvation-induced hepatocyte autophagy. Gastroenterology. 135:840–848.e1-e3. 2008. View Article : Google Scholar : PubMed/NCBI | |
Donna D and Sharad K: Autophagy-dependent cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar : PubMed/NCBI | |
Santana-Codina N and Mancias JD: The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals (Basel). 11:1142018. View Article : Google Scholar | |
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Veitch K, Maisin L and Hue L: Trimetazidine effects on the damage to mitochondrial functions caused by ischemia and reperfusion. Am J Cardiol. 76:B25–B30. 1995. View Article : Google Scholar | |
Guarnieri C and Muscari C: Effect of trimetazidine on mitochondrial function and oxidative damage during reperfusion of ischemic hypertrophied rat myocardium. Pharmacology. 46:324–331. 1993. View Article : Google Scholar : PubMed/NCBI | |
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vuckovic AM, Bosello TV, Zaccarin M, Zennaro L, et al: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Madungwe NB, Imam AA, Tombo N and Bopassa JC: Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun. 520:606–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
Giakoustidis D, Papageorgiou G, Iliadis S, Giakoustidis A, Kostopoulou E, Kontos N, Botsoglou E, Tsantilas D, Papanikolaou V and Takoudas D: The protective effect of alpha-tocopherol and GdCl3 against hepatic ischemia/reperfusion injury. Surg Today. 36:450–456. 2006. View Article : Google Scholar : PubMed/NCBI | |
Masaki H, Okano Y, Ochiai Y, Obayashi K, Akamatsu H and Sakurai H: Alpha-tocopherol increases the intracellular glutathione level in HaCaT keratinocytes. Free Radic Res. 36:705–709. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lee WY and Lee SM: Protective effects of alpha-tocopherol and ischemic preconditioning on hepatic reperfusion injury. Arch Pharm Res. 28:1392–1399. 2005. View Article : Google Scholar : PubMed/NCBI | |
Giakoustidis D, Papageorgiou G, Iliadis S, Kontos N, Kostopoulou E, Papachrestou A, Tsantilas D, Spyridis C, Takoudas D, Botsoglou N, et al: Intramuscular administration of very high dose of alpha-tocopherol protects liver from severe ischemia/reperfusion injury. World J Surg. 26:872–877. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gondolesi GE, Lausada N, Schinella G, Semplici AM, Vidal MS, Luna GC, Toledo J, de Buschiazzo PM and Raimondi JC: Reduction of ischemia-reperfusion injury in parenchymal and nonparenchymal liver cells by donor treatment with DL-alpha-tocopherol prior to organ harvest. Transplant Proc. 34:1086–1091. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ruttinger D, Vollmar B, Wanner GA and Messmer K: In vivo assessment of hepatic alterations following gadolinium chloride-induced Kupffer cell blockade. J Hepatol. 25:960–967. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cerwenka H, Khoschsorur G, Bacher H, Werkgartner G, El-Shabrawi A, Quehenberger F, Rabl H and Mischinger HJ: Normothermic liver ischemia and antioxidant treatment during hepatic resections. Free Radic Res. 30:463–469. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kohen R and Nyska A: Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 30:620–650. 2002. View Article : Google Scholar : PubMed/NCBI | |
Packer JE, Slater TF and Willson RL: Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 278:737–738. 1979. View Article : Google Scholar : PubMed/NCBI | |
Lee WY, Lee JS and Lee SM: Protective effects of combined ischemic preconditioning and ascorbic acid on mitochondrial injury in hepatic ischemia/reperfusion. J Surg Res. 142:45–52. 2007. View Article : Google Scholar : PubMed/NCBI | |
Seo MY and Lee SM: Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J Hepatol. 36:72–77. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rabl H, Khoschsorur G and Petek W: Antioxidative vitamin treatment: Effect on lipid peroxidation and limb swelling after revascularization operations. World J Surg. 19:738–744. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bilzer M and Lauterburg BH: Effects of hypochlorous acid and chloramines on vascular resistance, cell integrity, and biliary glutathione disulfide in the perfused rat liver: Modulation by glutathione. J Hepatol. 13:84–89. 1991. View Article : Google Scholar : PubMed/NCBI | |
Winterbourn CC and Metodiewa D: The reaction of superoxide with reduced glutathione. Arch Biochem Biophys. 314:284–290. 1994. View Article : Google Scholar : PubMed/NCBI | |
Schauer RJ, Gerbes AL, Vonier D, Meissner H, Michl P, Leiderer R, Schildberg FW, Messmer K and Bilzer M: Glutathione protects the rat liver against reperfusion injury after prolonged warm ischemia. Ann Surg. 239:220–231. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cotgreave IA: N-acetylcysteine: Pharmacological considerations and experimental and clinical applications. Adv Pharmacol. 38:205–227. 1997. View Article : Google Scholar : PubMed/NCBI | |
Dulundu E, Ozel Y, Topaloglu U, Sehirli O, Ercan F, Gedik N and Sener G: Alpha-lipoic acid protects against hepatic ischemia-reperfusion injury in rats. Pharmacology. 79:163–170. 2007. View Article : Google Scholar : PubMed/NCBI | |
Müller C, Dunschede F, Koch E, Vollmar AM and Kiemer AK: Alpha-lipoic acid preconditioning reduces ischemia-reperfusion injury of the rat liver via the PI3-kinase/Akt pathway. Am J Physiol Gastrointest Liver Physiol. 285:G769–G778. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dunschede F, Erbes K, Kircher A, Westermann S, Seifert J, Schad A, Oliver K, Kiemer AK and Theodor J: Reduction of ischemia reperfusion injury after liver resection and hepatic inflow occlusion by alpha-lipoic acid in humans. World J Gastroenterol. 12:6812–6817. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kagan VE, Shvedova A, Serbinova E, Khan S, Swanson C, Powell R and Packer L: Dihydrolipoic acid-a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem Pharmacol. 44:1637–1649. 1992. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Xu H, Li J, Gao HM, Xing YH, Lin Z, Li HJ, Wang YQ and Cao SH: Complement depletion with cobra venom factor alleviates acute hepatic injury induced by ischemiareperfusion. Mol Med Rep. 18:4523–4529. 2018.PubMed/NCBI | |
Mao YF, Yu QH, Zheng XF, Liu K, Liang WQ, Wang YW, Deng XM and Jiang L: Pre-treatment with Cobra venom factor alleviates acute lung injury induced by intestinal ischemia-reperfusion in rats. Eur Rev Med Pharmacol Sci. 17:2207–2217. 2013.PubMed/NCBI | |
Vogel CW, Finnegan PW and Fritzinger DC: Humanized cobra venom factor: Structure, activity, and therapeutic efficacy in preclinical disease models. Mol Immunol. 61:191–203. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vogel CW and Fritzinger DC: Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon. 56:1198–1222. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang W, Li Y, Xiao Y, Cheng J and Jia J: The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol Pharm Bull. 38:1234–1239. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kukan M, Vajdova K, Horecky J, Nagyova A, Mehendale HM and Trnovec T: Effects of blockade of Kupffer cells by gadolinium chloride on hepatobiliary function in cold ischemia-reperfusion injury of rat liver. Hepatology. 26:1250–1257. 1997. View Article : Google Scholar : PubMed/NCBI | |
Cutrin JC, Boveris A, Zingaro B, Corvetti G and Poli G: In situ determination by surface chemiluminescence of temporal relationships between evolving warm ischemia-reperfusion injury in rat liver and phagocyte activation and recruitment. Hepatology. 31:622–632. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sindram D, Porte RJ, Hoffman MR, Bentley RC and Clavien PA: Synergism between platelets and leukocytes in inducing endothelial cell apoptosis in the cold ischemic rat liver: A Kupffer cell-mediated injury. FASEB J. 15:1230–1232. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vajdova K, Smrekova R, Kukan M, Jakubovsky J, van Rooijen N, Horecky J, Lutterova M and Wsolova L: Endotoxin-induced aggravation of preservation-reperfusion injury of rat liver and its modulation. J Hepatol. 32:112–120. 2000. View Article : Google Scholar : PubMed/NCBI | |
Giakoustidis DE, Iliadis S, Tsantilas D, Papageorgiou G, Kontos N, Kostopoulou E, Botsoglou NA, Gerasimidis T and Dimitriadou A: Blockade of Kupffer cells by gadolinium chloride reduces lipid peroxidation and protects liver from ischemia/reperfusion injury. Hepatogastroenterology. 50:1587–1592. 2003.PubMed/NCBIPubMed/NCBI | |
Bremer C, Bradford BU, Hunt KJ, Knecht KT, Connor HD, Mason RP and Thurman RG: Role of Kupffer cells in the pathogenesis of hepatic reperfusion injury. Am J Physiol. 267:G630–G636. 1994.PubMed/NCBI | |
Dixon LJ, Barnes M, Tang H, Pritchard MT and Nagy LE: Kupffer cells in the liver. Compr Physiol. 3:785–797. 2013.PubMed/NCBI | |
Callery MP, Kamei T and Flye MW: Kupffer cell blockade increases mortality during intra-abdominal sepsis despite improving systemic immunity. Arch Surg. 125:36–41. 1990. View Article : Google Scholar : PubMed/NCBI |