The potential role and trend of HIF‑1α in intervertebral disc degeneration: Friend or foe? (Review)
- Authors:
- Yongjin Li
- Shen Liu
- Dayu Pan
- Baoshan Xu
- Xuewu Xing
- Hengxing Zhou
- Bin Zhang
- Suzhe Zhou
- Guangzhi Ning
- Shiqing Feng
-
Affiliations: Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Department of Spine Surgery, Tianjin Hospital, Tianjin 300000, P.R. China, Department of Orthopedic Surgery, First Central Clinical of Tianjin Medical University, Tianjin 300052, P.R. China, Department of Orthopedics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200034, P.R. China - Published online on: January 28, 2021 https://doi.org/10.3892/mmr.2021.11878
- Article Number: 239
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Deyo RA and Tsui-Wu YJ: Descriptive epidemiology of low-back pain and its related medical care in the United States. Spine (Phila Pa 1976). 12:264–268. 1987. View Article : Google Scholar : PubMed/NCBI | |
Andersson GB: Epidemiological features of chronic low-back pain. Lancet. 354:581–585. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, et al: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380:2163–2196. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Fang XQ, Wang Q, Wang SW, Wang SW, Hu ZJ, Zhou ZJ, Xu WB, Wang JY, Qin A and Fan SW: PHD/HIF-1 upregulates CA12 to protect against degenerative disc disease: A human sample, in vitro and ex vivo study. Lab Invest. 96:561–569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luoma K, Riihimäki H, Luukkonen R, Raininko R, Viikari-Juntura E and Lamminen A: Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976). 25:487–492. 2000. View Article : Google Scholar : PubMed/NCBI | |
Samartzis D, Karppinen J, Mok F, Fong DY, Luk KD and Cheung KM: A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J Bone Joint Surg Am. 93:662–670. 2011. View Article : Google Scholar : PubMed/NCBI | |
Verrills P, Nowesenitz G and Barnard A: Prevalence and characteristics of discogenic pain in tertiary practice: 223 consecutive cases utilizing lumbar discography. Pain Med. 16:1490–1499. 2015. View Article : Google Scholar : PubMed/NCBI | |
Risbud MV and Shapiro IM: Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat Rev Rheumatol. 10:44–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bijkerk C, Houwing-Duistermaat JJ, Valkenburg HA, Meulenbelt I, Hofman A, Breedveld FC, Pols HA, van Duijn CM and Slagboom PE: Heritabilities of radiologic osteoarthritis in peripheral joints and of disc degeneration of the spine. Arthritis Rheum. 42:1729–1735. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sambrook PN, MacGregor AJ and Spector TD: Genetic influences on cervical and lumbar disc degeneration: A magnetic resonance imaging study in twins. Arthritis Rheum. 42:366–372. 1999. View Article : Google Scholar : PubMed/NCBI | |
Battié MC, Videman T, Gibbons LE, Fisher LD, Manninen H and Gill K: 1995 Volvo award in clinical sciences: Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine (Phila Pa 1976). 20:2601–2612. 1995. View Article : Google Scholar : PubMed/NCBI | |
van den Eerenbeemt KD, Ostelo RW, van Royen BJ, Peul WC and van Tulder MW: Total disc replacement surgery for symptomatic degenerative lumbar disc disease: A systematic review of the literature. Eur Spine J. 19:1262–1280. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jacobs WC, van der Gaag NA, Kruyt MC, Tuschel A, de Kleuver M, Peul WC, Verbout AJ and Oner FC: Total disc replacement for chronic discogenic low back pain: A Cochrane review. Spine (Phila Pa 1976). 38:24–36. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nozawa S, Nozawa A, Kojima H and Shimizu K: Spontaneous disappearance of lumbar disk herniation within 3 months. Orthopedics. 32:8522009.PubMed/NCBI | |
Ryu SJ and Kim IS: Spontaneous regression of a large lumbar disc extrusion. J Korean Neurosurg Soc. 48:285–287. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Geng X and Fang Q: Spontaneous disappearance of large lumbar disk herniation. JAMA Neurol. 75:123–124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Humzah MD and Soames RW: Human intervertebral disc: Structure and function. Anat Rec. 220:337–356. 1988. View Article : Google Scholar : PubMed/NCBI | |
Nerlich AG, Boos N, Wiest I and Aebi M: Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Arch. 432:67–76. 1988. View Article : Google Scholar | |
Ogata K and Whiteside LA: 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique. Spine (Phila Pa 1976). 6:211–216. 1981. View Article : Google Scholar : PubMed/NCBI | |
Gruber HE, Ashraf N, Kilburn J, Williams C, Norton HJ, Gordon BE and Hanley EN Jr: Vertebral endplate architecture and vascularization: Application of micro-computerized tomography, a vascular tracer, and immunocytochemistry in analyses of disc degeneration in the aging sand rat. Spine (Phila Pa 1976). 30:2593–2600. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fujita N, Markova D, Anderson DG, Chiba K, Toyama Y, Shapiro IM and Risbud MV: Expression of prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc: Distinct roles of PHD2 and PHD3 proteins in controlling HIF-1α activity in hypoxia. J Biol Chem. 287:16975–16986. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K and An HS: The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine (Phila Pa 1976). 28:982–990. 2003. View Article : Google Scholar : PubMed/NCBI | |
Urban JP, Smith S and Fairbank JC: Nutrition of the intervertebral disc. Spine (Phila Pa 1976). 29:2700–2709. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guiot BH and Fessler RG: Molecular biology of degenerative disc disease. Neurosurgery. 47:1034–1040. 2000. View Article : Google Scholar : PubMed/NCBI | |
Feng G, Jin X, Hu J, Ma H, Gupte MJ, Liu H and Ma PX: Effects of hypoxias and scaffold architecture on rabbit mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype. Biomaterials. 32:8182–8189. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sakai D and Grand S: Advancing the cellular and molecular therapy for intervertebral disc disease. Adv Drug Deliv Rev. 84:159–171. 2015. View Article : Google Scholar : PubMed/NCBI | |
Risbud MV, Schipani E and Shapiro IM: Hypoxic regulation of nucleus pulposus cell survival: From niche to notch. Am J Pathol. 176:1577–1583. 2010. View Article : Google Scholar : PubMed/NCBI | |
Feng G, Li L, Liu H, Song Y, Huang F, Tu C, Shen B, Gong Q, Li T, Liu L, et al: Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3D scaffolds. Osteoarthritis Cartilage. 21:582–588. 2013. View Article : Google Scholar : PubMed/NCBI | |
Feng G, Li L, Hong Y, Liu H, Song Y, Pei F, Ma PX, Gong Q and Gupte MJ: Hypoxia promotes nucleus pulposus phenotype in 3D scaffolds in vitro and in vivo: Laboratory investigation. J Neurosurg Spine. 21:303–309. 2014. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Life with oxygen. Science. 318:62–64. 2007. View Article : Google Scholar : PubMed/NCBI | |
Richardson SM, Knowles R, Tyler J, Mobasheri A and Hoyland JA: Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc. Histochem Cell Biol. 129:503–511. 2008. View Article : Google Scholar : PubMed/NCBI | |
Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC and Xavier RJ: An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res. 37:4587–4602. 2009. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Hypoxia-inducible factor 1: Control of oxygen homeostasis in health and disease. Pediatr Res. 49:614–617. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sharp FR and Bernaudin M: HIF1 and oxygen sensing in the brain. Nat Rev Neurosci. 5:437–448. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu FJ, Kaur P, Karolina DS, Sepramaniam S, Armugam A, Wong PT and Jeyaseelan K: MiR-335 regulates hif-1α to reduce cell death in both mouse cell line and rat ischemic models. PLoS One. 10:e01284322015. View Article : Google Scholar : PubMed/NCBI | |
Eales KL, Hollinshead KE and Tennant DA: Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 5:e1902016. View Article : Google Scholar : PubMed/NCBI | |
Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC, Harris AL and Koukourakis MI: Upregulated hypoxia inducible factor-1alpha and −2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 5:R193–R201. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ, Min BH and Chun JS: Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med. 16:687–693. 2010. View Article : Google Scholar : PubMed/NCBI | |
Konisti S, Kiriakidis S and Paleolog EM: Hypoxia-a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat Rev Rheumatol. 8:153–162. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vergroesen PP, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, van Royen BJ, van Dieën JH and Smit TH: Mechanics and biology in intervertebral disc degeneration: A vicious circle. Osteoarthritis Cartilage. 23:1057–1070. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kwon WK, Moon HJ, Kwon TH, Park YK and Kim JH: The role of hypoxia in angiogenesis and extracellular matrix regulation of intervertebral disc cells during inflammatory reactions. Neurosurgery. 81:867–875. 2017.PubMed/NCBI | |
Wu WJ, Zhang XK, Zheng XF, Yang YH, Jiang SD and Jiang LS: SHH-dependent knockout of HIF-1 alpha accelerates the degenerative process in mouse intervertebral disc. Int J Immunopathol Pharmacol. 26:601–609. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ha KY, Koh I, Kirpalani PA, Kim YY, Cho YK, Khang GS and Han CW: The expression of hypoxia inducible factor-1alpha and apoptosis in herniated discs. Spine (Phila Pa 1976). 31:1309–1313. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hu CJ, Wang LY, Chodosh LA, Keith B and Simon MC: Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 23:9361–9374. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen JW, Ni BB, Zheng XF, Li B, Jiang SD and Jiang LS: Hypoxia facilitates the survival of nucleus pulposus cells in serum deprivation by down-regulating excessive autophagy through restricting ROS generation. Int J Biochem Cell Biol. 59:1–10. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang SH, Hu MH, Sun YH and Lin FH: Differential phenotypic behaviors of human degenerative nucleus pulposus cells under normoxic and hypoxic conditions: Influence of oxygen concentration during isolation, expansion, and cultivation. Spine J. 13:1590–1596. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang SH, Hu MH, Lo WY, Sun YH, Wu CC and Yang KC: The influence of oxygen concentration on the extracellular matrix production of human nucleus pulposus cells during isolation-expansion process. J Biomed Mater Res A. 105:1575–1582. 2017. View Article : Google Scholar : PubMed/NCBI | |
Skubutyte R, Markova D, Freeman TA, Anderson DG, Dion AS, Williams CJ, Shapiro IM and Risbud MV: Hypoxia-inducible factor regulation of ANK expression in nucleus pulposus cells: Possible implications in controlling dystrophic mineralization in the intervertebral disc. Arthritis Rheum. 62:2707–2715. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jing SW, Wang YD, Kuroda M, Su JW, Sun GG, Liu Q, Cheng YJ and Yang CR: HIF-1α contributes to hypoxia-induced invasion and metastasis of esophageal carcinoma via inhibiting E-cadherin and promoting MMP-2 expression. Acta Med Okayama. 66:399–407. 2012.PubMed/NCBI | |
Rodrigues M, Xin X, Jee K, Babapoor-Farrokhran S, Kashiwabuchi F, Ma T, Bhutto I, Hassan SJ, Daoud Y, Baranano D, et al: VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes. 62:3863–3873. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tsai SH, Huang PH, Hsu YJ, Peng YJ, Lee CH, Wang JC, Chen JW and Lin SJ: Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep. 6:286122016. View Article : Google Scholar : PubMed/NCBI | |
Wu WP, Jiang JM, Qu DB, Wei QZ and Jiang H: Expression of hypoxia-inducible factor-1alpha and matrix metalloproteinase-2 in degenerative lumbar intervertebral disc. Nan Fang Yi Ke Da Xue Xue Bao. 30:1152–1155. 2010.(In Chinese). PubMed/NCBI | |
Wang X, Lv G, Li J, Wang B, Zhang Q and Lu C: LncRNA-RP11-296A18.3/miR-138/HIF1A pathway regulates the proliferation ECM synthesis of human nucleus pulposus cells (HNPCs). J Cell Biochem. 118:4862–4871. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang LE, Gu J, Schau M and Bunn HF: Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 95:7987–7992. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wenger RH: Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16:1151–1162. 2002. View Article : Google Scholar : PubMed/NCBI | |
Makino Y, Kanopka A, Wilson WJ, Tanaka H and Poellinger L: Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem. 277:32405–32408. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pasanen A, Heikkilä M, Rautavuoma K, Hirsilä M, Kivirikko KI and Myllyharju J: Hypoxia-inducible factor (HIF)-3alpha is subject to extensive alternative splicing in human tissues and cancer cells and is regulated by HIF-1 but not HIF-2. Int J Biochem Cell Biol. 42:1189–1200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moritz W, Meier F, Stroka DM, Giuliani M, Kugelmeier P, Nett PC, Lehmann R, Candinas D, Gassmann M and Weber M: Apoptosis in hypoxic human pancreatic islets correlates with HIF-1alpha expression. FASEB J. 16:745–747. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wenger RH and Gassmann M: Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem. 378:609–616. 1997.PubMed/NCBI | |
Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y and Fujii-Kuriyama Y: A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA. 94:4273–4278. 1997. View Article : Google Scholar : PubMed/NCBI | |
Tian H, McKnight SL and Russell DW: Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11:72–82. 1997. View Article : Google Scholar : PubMed/NCBI | |
Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan LJ, Hammond R, Gimotty PA, Keith B and Simon MC: Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest. 120:2699–2714. 2010. View Article : Google Scholar : PubMed/NCBI | |
Madsen CD, Pedersen JT, Venning FA, Singh LB, Moeendarbary E, Charras G, Cox TR, Sahai E and Erler JT: Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep. 16:1394–1408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fujita N, Chiba K, Shapiro IM and Risbud MV: HIF-1α and HIF-2α degradation is differentially regulated in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res. 27:401–412. 2012. View Article : Google Scholar : PubMed/NCBI | |
Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, Pugh CW, Maxwell PH, Harris AL and Ratcliffe PJ: Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 25:5675–5686. 2005. View Article : Google Scholar : PubMed/NCBI | |
Eyre DR, Benya P, Buckwalter JA, Caterson B, Heinegard D, Oegema T, Pearce R, Pope M and Urban J: Basic Sciences Perspectives: Part B-Intervertebral Discs. Park Ridge: American Academy of Orthopaedic Surgeons; pp. 147–207. 1989 | |
Shao J, Yu M, Jiang L, Wei F, Wu F, Liu Z and Liu X: Differences in calcification and osteogenic potential of herniated discs according to the severity of degeneration based on Pfirrmann grade: A cross-sectional study. BMC Musculoskelet Disord. 17:1912016. View Article : Google Scholar : PubMed/NCBI | |
Grant MP, Epure LM, Bokhari R, Roughley P, Antoniou J and Mwale F: Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur Cell Mater. 32:137–151. 2016. View Article : Google Scholar : PubMed/NCBI | |
Karamouzian S, Eskandary H, Faramarzee M, Saba M, Safizade H, Ghadipasha M, Malekpoor AR and Ohadi A: Frequency of lumbar intervertebral disc calcification and angiogenesis, and their correlation with clinical, surgical, and magnetic resonance imaging findings. Spine (Phila Pa 1976). 35:881–886. 2010. View Article : Google Scholar : PubMed/NCBI | |
Adams MA and Roughley PJ: What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 31:2151–2161. 2006. View Article : Google Scholar : PubMed/NCBI | |
Eyre DR and Muir H: Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta. 492:29–42. 1977. View Article : Google Scholar : PubMed/NCBI | |
Roughley P, Martens D, Rantakokko J, Alini M, Mwale F and Antoniou J: The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cell Mater. 11:1–7. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hu B, Xu C, Tian Y, Shi C, Zhang Y, Deng L, Zhou H, Cao P, Chen H and Yuan W: Inflammatory microRNA-194 and −515 attenuate the biosynthesis of chondroitin sulfate during human intervertebral disc degeneration. Oncotarget. 8:49303–49317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Poole AR: Biologic markers and disc degeneration. J Bone Joint Surg Am. 88 (Suppl 2):S72–S75. 2006. View Article : Google Scholar | |
Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM and Roberts S: Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976). 23:2545–2551. 1998. View Article : Google Scholar : PubMed/NCBI | |
Vo NV, Hartman RA, Patil PR, Risbud MV, Kletsas D, Iatridis JC, Hoyland JA, Le Maitre CL, Sowa GA and Kang JD: Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res. 34:1289–1306. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peck SH, McKee KK, Tobias JW, Malhotra NR, Harfe BD and Smith LJ: Whole transcriptome analysis of notochord-derived cells during embryonic formation of the nucleus pulposus. Sci Rep. 7:105042017. View Article : Google Scholar : PubMed/NCBI | |
Freemont AJ: The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology (Oxford). 48:5–10. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Li C, Meng X, Bai Y, Qi J, Wang J, Zhou Q, Zhang W and Zhang X: Hypoxia-inducible factor-lα mediates aggrecan and collagen Π expression via NOTCH1 signaling in nucleus pulposus cells during intervertebral disc degeneration. Biochem Biophys Res Commun. 488:554–561. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Li M, Luo J and Gu W: Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem. 278:13595–13598. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aro E, Khatri R, Gerard-O'Riley R, Mangiavini L, Myllyharju J and Schipani E: Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes. J Biol Chem. 287:37134–37144. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meretoja VV, Dahlin RL, Wright S, Kasper FK and Mikos AG: The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials. 34:4266–4273. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D and Semenza GL: Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 288:10819–10829. 2014. View Article : Google Scholar | |
Mwale F, Ciobanu I, Giannitsios D, Roughley P, Steffen T and Antoniou J: Effect of oxygen levels on proteoglycan synthesis by intervertebral disc cells. Spine (Phila Pa 1976). 36:E131–E138. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pei M, Shoukry M, Li J, Daffner SD, France JC and Emery SE: Modulation of in vitro microenvironment facilitates synovium derived stem cell-based nucleus pulposus tissue regeneration. Spine (Phila Pa 1976). 37:1538–1547. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ishihara H and Urban JP: Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res. 17:829–835. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cigognini D, Gaspar D, Kumar P, Satyam A, Alagesan S, Sanz-Nogués C, Griffin M, O'Brien T, Pandit A and Zeugolis DI: Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture-A step closer to physiologically relevant in vitro organogenesis. Sci Rep. 6:307462016. View Article : Google Scholar : PubMed/NCBI | |
Obradovic B, Carrier RL, Vunjak-Novakovic G and Freed LE: Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng. 63:197–205. 1999. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995. View Article : Google Scholar : PubMed/NCBI | |
Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM and Dvorak HF: Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 12:303–324. 1993. View Article : Google Scholar : PubMed/NCBI | |
Marsano A, Maidhof R, Luo J, Fujikara K, Konofagou EE, Banfi A and Vunjak-Novakovic G: The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials. 34:393–401. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE, et al: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 331:1480–1487. 1994. View Article : Google Scholar : PubMed/NCBI | |
Saharinen P, Eklund L and Alitalo K: Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. 16:635–661. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pugh CW and Ratcliffe PJ: Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat Med. 9:677–684. 2003. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 38:721–732. 2003. View Article : Google Scholar | |
Agrawal A, Gajghate S, Smith H, Anderson DG, Albert TJ, Shapiro IM and Risbud MV: Cited2 modulates hypoxia-inducible factor-dependent expression of vascular endothelial growth factor in nucleus pulposus cells of the rat intervertebral disc. Arthritis Rheum. 58:3798–3808. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ahn JK, Koh EM, Cha HS, Lee YS, Kim J, Bae EK and Ahn KS: Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford). 47:834–839. 2008. View Article : Google Scholar : PubMed/NCBI | |
Calvani M, Rapisarda A, Uranchimeg B, Shoemaker RH and Melillo G: Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood. 107:2705–2712. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P and van der Wall E: Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology. 46:31–36. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Chen G and Li YP: TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar : PubMed/NCBI | |
Bian Q, Ma L, Jain A, Crane JL, Kebaish K, Wan M, Zhang Z, Edward Guo X, Sponseller PD, Séguin CA, et al: Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis. Bone Res. 5:170082017. View Article : Google Scholar : PubMed/NCBI | |
oshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H and Kuwano M: Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol. 17:4015–4023. 1997. View Article : Google Scholar : PubMed/NCBI | |
Haro H, Kato T, Komori H, Osada M and Shinomiya K: Vascular endothelial growth factor (VEGF)-induced angiogenesis in herniated disc resorption. J Orthop Res. 20:409–415. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Song JY, Baek M, Jung HY, Kang H, Han IB, Kwon YD and Shin DE: Interleukin-1β induces angiogenesis and innervation in human intervertebral disc degeneration. J Orthop Res. 29:265–269. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sang Q: Complex role of matrix metal oproteinases in angiogenesis. Cell Res. 8:171–177. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ebrahem Q and Anand A: Induction of angiogenesis by active matrix metalloproteinases-2 and 9: Role of VEGF. Invest Ophthalmol Vis Sci. 44:445–452. 2003. | |
Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, Zhang H, Sun J, Li F, Liu R and Chen C: Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. 37:1961–1975. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mazure NM, Brahimi-Horn MC and Pouysségur J: Protein kinases and the hypoxia-inducible factor-1, two switches in angiogenesis. Curr Pharm Des. 9:531–541. 2003. View Article : Google Scholar : PubMed/NCBI | |
Han IB, Ropper AE, Teng YD, Shin DA, Jeon YJ, Park HM, Shin DE, Park YS, Kim KN and Kim NK: Association between VEGF and eNOS gene polymorphisms and lumbar disc degeneration in a young Korean population. Genet Mol Res. 12:2294–2305. 2013. View Article : Google Scholar : PubMed/NCBI | |
Long H and Hu Y: Expression of vascular endothelial growth factor in lumbar intervertebral disc and its significance. Chin J Spinal Cord. 12:280–282. 2002. | |
Doita M, Kanatani T, Ozaki T, Matsui N, Kurosaka M and Yoshiya S: Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinases leading to disc resorption. Spine (Phila Pa 1976). 26:1522–1527. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi S, Meir A, Kokubo Y, Uchida K, Takeno K, Miyazaki T, Yayama T, Kubota M, Nomura E, Mwaka E and Baba H: Ultrastructural analysis on lumbar disc herniation using surgical specimens: Role of neovascularization and macrophages in hernias. Spine (Phila Pa 1976). 34:655–662. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu XY, Ding XH, Zhong LJ, Xia H, Chen XD and Huang H: Expression and significance of VEGF and p53 in degenerate intervertebral disc tissue. Asian Pac J Trop Med. 6:79–81. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Puig N, Veprintsev DB and Fersht AR: Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol Cell. 17:11–21. 2005. View Article : Google Scholar : PubMed/NCBI | |
Aubrey BJ, Kelly GL, Janic A, Herold MJ and Strasser A: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ullah K, Rosendahl AH, Izzi V, Bergmann U, Pihlajaniemi T, Mäki JM and Myllyharju J: Hypoxia-inducible factor prolyl-4-hydroxylase-1 is a convergent point in the reciprocal negative regulation of NF-κB and p53 signaling pathways. Sci Rep. 7:172202017. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury AR, Long A, Fuchs SY, Rustgi A and Avadhani NG: Mitochondrial stress-induced p53 attenuates HIF-1α activity by physical association and enhanced ubiquitination. Oncogene. 36:397–409. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fujita N, Gogate SS, Chiba K, Toyama Y, Shapiro IM and Risbud MV: Prolyl hydroxylase 3 (PHD3) modulates catabolic effects of tumor necrosis factor-α (TNF-α) on cells of the nucleus pulposus through co-activation of nuclear factor κB (NF-κB)/p65 signaling. J Biol Chem. 287:39942–39953. 2012. View Article : Google Scholar : PubMed/NCBI | |
Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM and Risbud MV: Disc in flames: Roles of TNF-α and IL-1β in intervertebral disc degeneration. Eur Cell Mater. 30:104–117. 2015. View Article : Google Scholar : PubMed/NCBI | |
Phillips KL, Cullen K, Chiverton N, Michael AL, Cole AA, Breakwell LM, Haddock G, Bunning RA, Cross AK and Le Maitre CL: Potential roles of cytokines and chemokines in human intervertebral disc degeneration: Interleukin-1 is a master regulator of catabolic processes. Osteoarthritis Cartilage. 23:1165–1177. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Xu S, Zhou H, Liu H, Jiang W, Hao J and Hu Z: IL-1β induces apoptosis and autophagy via mitochondria pathway in human degenerative nucleus pulposus cells. Sci Rep. 7:410672017. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Fang J, Hao J, Zhong X, Wang D, Ren H and Hu Z: SIRT1 inhibits the catabolic effect of IL-1β through TLR2/SIRT1/NF-κB pathway in human degenerative nucleus pulposus cells. Pain Physician. 19:E215–E226. 2016.PubMed/NCBI | |
Cheng X, Zhang L, Zhang K, Zhang G, Hu Y, Sun X, Zhao C, Li H, Li YM and Zhao J: Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Ann Rheum Dis. 77:770–779. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, He P, Pan H, Long J, Wang J, Li Z, Liu H, Jiang W and Zheng Z: Circular RNA circ-4099 is induced by TNF-α and regulates ECM synthesis by blocking miR-616-5p inhibition of Sox9 in intervertebral disc degeneration. Exp Mol Med. 50:272018. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Yuan W, Fujita N, Wang J, Wang H, Shapiro IM and Risbud MV: Inflammatory cytokines associated with degenerative disc disease control aggrecanase-1 (ADAMTS-4) expression in nucleus pulposus cells through MAPK and NF-κB. Am J Pathol. 182:2310–2321. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tian Y, Wang J, Phillips KL, Binch AL, Dunn S, Cross A, Chiverton N, Zheng Z, Shapiro IM, et al: Inflammatory cytokines induce NOTCH signaling in nucleus pulposus cells: Implications in intervertebral disc degeneration. J Biol Chem. 288:16761–16774. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, et al: HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 112:645–657. 2003. View Article : Google Scholar : PubMed/NCBI | |
Oliver KM, Taylor CT and Cummins EP: Hypoxia. Regulation of NFkappaB signalling during inflammation: The role of hydroxylases. Arthritis Res Ther. 11:2152009. View Article : Google Scholar : PubMed/NCBI | |
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42. 2011. View Article : Google Scholar : PubMed/NCBI | |
Malandrino A, Noailly J and Lacroix D: The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. PLoS Comput Biol. 7:e10021122011. View Article : Google Scholar : PubMed/NCBI | |
Mannello F and Medda V: Nuclear localization of matrix metalloproteinases. Prog Histochem Cytochem. 47:27–58. 2012. View Article : Google Scholar : PubMed/NCBI | |
Crean JK, Roberts S, Jaffray DC, Eisenstein SM and Duance VC: Matrix metalloproteinases in the human intervertebral disc: Role in disc degeneration and scoliosis. Spine (Phila Pa 1976). 22:2877–2884. 1997. View Article : Google Scholar : PubMed/NCBI | |
Weiler C, Nerlich AG, Zipperer J, Bachmeier BE and Boos N: 2002 SSE award competition in basic science: Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J. 11:308–320. 2002. View Article : Google Scholar : PubMed/NCBI | |
Visse R and Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res. 92:827–839. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Mustafa A, Yerzhan A, Merzhakupova D, Yerlan P, N Orakov A, Wang X, Huang Y and Miao L: Nuclear matrix metalloproteinases: Functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov. 3:170362017. View Article : Google Scholar : PubMed/NCBI | |
Kozaci LD, Guner A, Oktay G and Guner G: Alterations in biochemical components of extracellular matrix in intervertebral disc herniation: Role of MMP-2 and TIMP-2 in type II collagen loss. Cell Biochem Funct. 24:431–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC and Eisenstein SM: Matrix metalloproteinases and aggrecanase: Their role in disorders of the human intervertebral disc. Spine (Phila Pa 1976). 25:3005–3013. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rutges JP, Kummer JA, Oner FC, Verbout AJ, Castelein RJ, Roestenburg HJ, Dhert WJ and Creemers LB: Increased MMP-2 activity during intervertebral disc degeneration is correlated to MMP-14 levels. J Pathol. 214:523–530. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yurube T, Takada T, Suzuki T, Kakutani K, Maeno K, Doita M, Kurosaka M and Nishida K: Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration. Arthritis Res Ther. 14:R512012. View Article : Google Scholar : PubMed/NCBI | |
Séguin CA, Pilliar RM, Madri JA and Kandel RA: TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine (Phila Pa 1976). 33:356–365. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu YQ, Zhang ZH, Zheng YF and Feng SQ: Dysregulated miR-133a mediates loss of type II collagen by directly targeting matrix metalloproteinase 9 (MMP9) in human intervertebral disc degeneration. Spine (Phila Pa 1976). 41:E717–E724. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hua WB, Wu XH, Zhang YK, Song Y, Tu J, Kang L, Zhao KC, Li S, Wang K, Liu W, et al: Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration. Biochimie. 139:74–80. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ji ML, Zhang XJ, Shi PL, Lu J, Wang SZ, Chang Q, Chen H and Wang C: Downregulation of microRNA-193a-3p is involved in invertebral disc degeneration by targeting MMP14. J Mol Med (Berl). 94:457–468. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang WL, Chen YF, Meng HZ, Du JJ, Luan GN, Wang HQ, Yang MW and Luo ZJ: Role of miR-155 in the regulation of MMP-16 expression in intervertebral disc degeneration. J Orthop Res. 35:1323–1334. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jung JC, Wang PX, Zhang G, Ezura Y, Fini ME and Birk DE: Collagen fibril growth during chicken tendon development: Matrix metalloproteinase-2 and its activation. Cell Tissue Res. 336:79–89. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Ding YM, Fan P, Wang B, Xu JH and Wang WX: Expression and significance of MMP2 and HIF-1α in hepatocellular carcinoma. Oncol Lett. 8:539–546. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Liu W, Duan Z, Gao Y, Li S, Wang K, Song Y, Shao Z, Yang S and Yang C: The involvement of protease nexin-1 (PN1) in the pathogenesis of intervertebral disc (IVD) degeneration. Sci Rep. 6:305632016. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Zhang L, Feng X, Chen T and Bi S: A new in vivo method to retard progression of intervertebral disc degeneration through stimulation of endogenous stem cells with simvastatin. Med Hypotheses. 101:65–66. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Weinberg JM, Malhotra R, Merritt SE, Holzman LB and Brosius FC III: GLUT-1 reduces hypoxia-induced apoptosis and JNK pathway activation. Am J Physiol Endocrinol Metab. 278:E958–E966. 2000. View Article : Google Scholar : PubMed/NCBI | |
Agrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM and Risbud MV: Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol. 293:C621–C631. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maher JC, Wangpaichitr M, Savaraj N, Kurtoglu M and Lampidis TJ: Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-D-glucose. Mol Cancer Ther. 6:732–741. 2007. View Article : Google Scholar : PubMed/NCBI | |
Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3:187–197. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ and Semenza GL: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 283:10892–10903. 2008. View Article : Google Scholar : PubMed/NCBI | |
Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, Pawling J, Zhang W, Sinha A, Rose CM, et al: PTP1B regulates non-mitochondrial oxygen consumption via RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 18:803–813. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dutta D, Xu J, Kim JS, Dunn WA Jr and Leeuwenburgh C: Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy. 9:328–344. 2013. View Article : Google Scholar : PubMed/NCBI | |
Caramés B, Taniguchi N, Otsuki S, Blanco FJ and Lotz M: Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 62:791–801. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Zhang X, Zheng X, Ru A, Ni X, Wu Y, Tian N, Huang Y, Xue E, Wang X and Xu H: Apoptosis, senescence, and autophagy in rat nucleus pulposus cells: Implications for diabetic intervertebral disc degeneration. J Orthop Res. 31:692–702. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tu J, Li W, Li S, Liu W, Zhang Y, Wu X, Luo R, Hua W, Wang K, Song Y, et al: Sestrin-mediated inhibition of stress-induced intervertebral disc degradation through the enhancement of autophagy. Cell Physiol Biochem. 45:1940–1954. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Xie JJ, Jin M, Gu YT, Wu CC, Guo WJ, Yan YZ, Zhang ZJ, Wang JL, Zhang XL, et al: Sirt6 overexpression suppresses senescence and apoptosis of nucleus pulposus cells by inducing autophagy in a model of intervertebral disc degeneration. Cell Death Dis. 9:562018. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Xia D, Pan Z, Xu D, Zhou Y, Wu Y, Cai N, Tang Q, Wang C, Yan M, et al: Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death Dis. 7:e24412016. View Article : Google Scholar : PubMed/NCBI | |
Gruber HE, Hoelscher GL, Ingram JA, Bethea S and Hanley EN Jr: Autophagy in the degenerating human intervertebral disc: In vivo molecular and morphological evidence, and induction of autophagy in cultured annulus cells exposed to proinflammatory cytokines-implications for disc degeneration. Spine (Phila Pa 1976). 40:773–782. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mazure NM and Pouysségur J: Hypoxia-induced autophagy: Cell death or cell survival? Curr Opin Cell Biol. 22:177–180. 2010. View Article : Google Scholar : PubMed/NCBI | |
Scherz-Shouval R and Elazar Z: Regulation of autophagy by ROS: Physiology and pathology. Trends Biochem Sci. 36:30–38. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Chen G, Zhang W, Xu N, Zhu JY, Jia J, Sun ZJ, Wang YN and Zhao YF: Autophagy regulates hypoxia-induced osteoclastogenesis through the HIF-1α/BNIP3 signaling pathway. J Cell Physiol. 227:639–648. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Yao W, Li C, Wu W, Li Q and Liu H: Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death Dis. 8:e30012017. View Article : Google Scholar : PubMed/NCBI | |
Ye W, Zhu W, Xu K, Liang A, Peng Y, Huang D and Li C: Increased macroautophagy in the pathological process of intervertebral disc degeneration in rats. Connect Tissue Res. 54:22–28. 2013. View Article : Google Scholar : PubMed/NCBI | |
Choi H, Merceron C, Mangiavini L, Seifert EL, Schipani E, Shapiro IM and Risbud MV: Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling. Autophagy. 12:1631–1646. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ding F, Shao Z-w and Xiong L-m: Cell death in intervertebral disc degeneration. Apoptosis. 18:777–785. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gruber HE and Hanley EN Jr: Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine (Phila Pa 1976). 23:751–757. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bakker WJ, Harris IS and Mak TW: FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell. 28:941–953. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fujita N, Imai J, Suzuki T, Yamada M, Ninomiya K, Miyamoto K, Iwasaki R, Morioka H, Matsumoto M, Chiba K, et al: Vascular endothelial growth factor-A is a survival factor for nucleus pulposus cells in the intervertebral disc. Biochem Biophys Res Commun. 372:367–372. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Leung VY, Long D, Chan D, Lu WW, Cheung KM and Zhou G: Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in rhesus macaque intervertebral disc. Biomaterials. 34:6548–6558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Danielson KG, Albert TJ, Shapiro IM and Risbud MV: HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc. J Bone Miner Res. 22:1851–1861. 2007. View Article : Google Scholar : PubMed/NCBI | |
Silagi ES, Schoepflin ZR, Seifert EL, Merceron C, Schipani E, Shapiro IM and Risbud MV: Bicarbonate recycling by HIF-1-dependent carbonic anhydrase isoforms 9 and 12 is critical in maintaining intracellular pH and viability of nucleus pulposus cells. J Bone Miner Res. 33:338–355. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guicheux J, Palmer G, Shukunami C, Hiraki Y, Bonjour JP and Caverzasio J: A novel in vitro culture system for analysis of functional role of phosphate transport in endochondral ossification. Bone. 27:69–74. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hristova GI, Jarzem P, Ouellet JA, Roughley PJ, Epure LM, Antoniou J and Mwale F: Calcification in human intervertebral disc degeneration and scoliosis. J Orthop Res. 29:1888–1895. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zaka R and Williams CJ: Role of the progressive ankylosis gene in cartilage mineralization. Curr Opin Rheumatol. 18:181–186. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gurley KA, Reimer RJ and Kingsley DM: Biochemical and genetic analysis of ANK in arthritis and bone disease. Am J Hum Genet. 79:1017–1029. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu MH, Sun C, Yao Y, Fan X, Liu H, Cui YH, Bian XW, Huang B and Zhou Y: Matrix stiffness promotes cartilage endplate chondrocyte calcification in disc degeneration via miR-20a targeting ANKH expression. Sci Rep. 6:254012016. View Article : Google Scholar : PubMed/NCBI | |
Sohn P, Crowley M, Slattery E and Serra R: Developmental and TGF-beta-mediated regulation of Ank mRNA expression in cartilage and bone. Osteoarthritis Cartilage. 10:482–490. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zaka R, Dion AS, Kusnierz A, Bohensky J, Srinivas V, Freeman T and Williams CJ: Oxygen tension regulates the expression of ANK (progressive ankylosis) in an HIF-1-dependent manner in growth plate chondrocytes. J Bone Miner Res. 24:1869–1878. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Deng G, Qiu Y, Huang X, Xi Y, Yu J, Yang X and Ye X: Transplantation of allogenic nucleus pulposus cells attenuates intervertebral disc degeneration by inhibiting apoptosis and increasing migration. Int J Mol Med. 41:2553–2564. 2018.PubMed/NCBI | |
Sica A, Schioppa T, Mantovani A and Allavena P: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur J Cancer. 42:717–727. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liang G, Liu Z, Tan L, Su AN, Jiang WG and Gong C: HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environment. Anticancer Res. 37:4337–4343. 2017.PubMed/NCBI | |
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.PubMed/NCBI | |
Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF and Bartoszewski R: miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target. Angiogenesis. 21:183–202. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bao MH, Li GY, Huang XS, Tang L, Dong LP and Li JM: Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis. Mol Pharmacol. 93:368–375. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dang RY, Liu FL and Li Y: Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis. Biochem Biophys Res Commun. 490:104–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhang J, Zou C, Xie X, Wang Y, Wang B, Zhao Z, Tu J, Wang X, Li H, et al: Microarray expression profile and functional analysis of circular RNAs in osteosarcoma. Cell Physiol Biochem. 43:969–985. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Zhang B, Mu K, Feng SQ, Dong ZY, Ning GZ, Li HR, Liu S, Zhao L, Li Y, et al: Circular RNA GRB10 as a competitive endogenous RNA regulating nucleus pulposus cells death in degenerative intervertebral disk. Cell Death Dis. 9:3192018. View Article : Google Scholar : PubMed/NCBI | |
Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J and Boos N: Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2:1873–1878. 2001. View Article : Google Scholar | |
Martin JT, Gorth DJ, Beattie EE, Harfe BD, Smith LJ and Elliott DM: Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration. J Orthop Res. 31:1276–1282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kulcheski FR, Christoff AP and Margis R: Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 238:42–51. 2016. View Article : Google Scholar : PubMed/NCBI |