1
|
Firestein GS: Evolving concepts of
rheumatoid arthritis. Nature. 423:356–361. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
van Vollenhoven RF: Treatment of
rheumatoid arthritis: State of the art 2009. Nat Rev Rheumatol.
5:531–541. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Noss EH and Brenner MB: The role and
therapeutic implications of fibroblast-like synoviocytes in
inflammation and cartilage erosion in rheumatoid arthritis. Immunol
Rev. 223:252–270. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bartok B and Firestein GS: Fibroblast-like
synoviocytes: Key effector cells in rheumatoid arthritis. Immunol
Rev. 233:233–255. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bucala R, Ritchlin C, Winchester R and
Cerami A: Constitutive production of inflammatory and mitogenic
cytokines by rheumatoid synovial fibroblasts. J Exp Med.
173:569–574. 1991. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ribel-Madsen S, Bartels EM, Stockmarr A,
Borgwardt A, Cornett C, Danneskiold-Samsøe B and Bliddal H: A
synoviocyte model for osteoarthritis and rheumatoid arthritis:
Response to Ibuprofen, betamethasone, and ginger extract-a
cross-sectional in vitro study. Arthritis. 2012:5058422012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Asahara H, Fujisawa K, Kobata T, Hasunuma
T, Maeda T, Asanuma M, Ogawa N, Inoue H, Sumida T and Nishioka K:
Direct evidence of high DNA binding activity of transcription
factor AP-1 in rheumatoid arthritis synovium. Arthritis Rheum.
40:912–918. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fujisawa K, Aono H, Hasunuma T, Yamamoto
K, Mita S and Nishioka K: Activation of transcription factor
NF-kappa B in human synovial cells in response to tumor necrosis
factor alpha. Arthritis Rheum. 39:197–203. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Arias J, Alberts AS, Brindle P, Claret FX,
Smeal T, Karin M, Feramisco J and Montminy M: Activation of cAMP
and mitogen responsive genes relies on a common nuclear factor.
Nature. 370:226–229. 1994. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Kwok RP, Lundblad JR, Chrivia JC, Richards
JP, Bächinger HP, Brennan RG, Roberts SG, Green MR and Goodman RH:
Nuclear protein CBP is a coactivator for the transcription factor
CREB. Nature. 370:223–226. 1994. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Kamei Y, Xu L, Heinzel T, Torchia J,
Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK and
Rosenfeld MG: A CBP integrator complex mediates transcriptional
activation and AP-1 inhibition by nuclear receptors. Cell.
85:403–414. 1996. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nakajima T, Uchida C, Anderson SF, Lee CG,
Hurwitz J, Parvin JD and Montminy M: RNA helicase A mediates
association of CBP with RNA polymerase II. Cell. 90:1107–1112.
1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Norton JD: ID helix-loop-helix proteins in
cell growth, differentiation and tumorigenesis. J Cell Sci.
113:3897–3905. 2000.PubMed/NCBI
|
14
|
Benezra R, Rafii S and Lyden D: The Id
proteins and angiogenesis. Oncogene. 20:8334–8341. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Benezra R, Davis RL, Lockshon D, Turner DL
and Weintraub H: The protein Id: A negative regulator of
helix-loop-helix DNA binding proteins. Cell. 61:49–59. 1990.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Christy BA, Sanders LK, Lau LF, Copeland
NG, Jenkins NA and Nathans D: An Id-related helix-loop-helix
protein encoded by a growth factor-inducible gene. Proc Natl Acad
Sci USA. 88:1815–1819. 1991. View Article : Google Scholar : PubMed/NCBI
|
17
|
Langlands K, Yin X, Anand G and Prochownik
EV: Differential interactions of Id proteins with
basic-helix-loop-helix transcription factors. J Biol Chem.
272:19785–19793. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun XH, Copeland NG, Jenkins NA and
Baltimore D: Id proteins Id1 and Id2 selectively inhibit DNA
binding by one class of helix-loop-helix proteins. Mol Cell Biol.
11:5603–5611. 1991. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yao Y, Doki Y, Jiang W, Imoto M, Venkatraj
VS, Warburton D, Santella RM, Lu B, Yan L, Sun XH, et al: Cloning
and characterization of DIP1, a novel protein that is related to
the Id family of proteins. Exp Cell Res. 257:22–32. 2000.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Terai S, Aoki H, Ashida K and Thorgeirsson
SS: Human homologue of maid: A dominant inhibitory helix-loop-helix
protein associated with liver-specific gene expression. Hepatology.
32:357–366. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xia C, Bao Z, Tabassam F, Ma W, Qiu M, Hua
S and Liu M: GCIP, a novel human grap2 and cyclin D interacting
protein, regulates E2F-mediated transcriptional activity. J Biol
Chem. 275:20942–20948. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma W, Stafford LJ, Li D, Luo J, Li X, Ning
G and Liu M: GCIP/CCNDBP1, a helix-loop-helix protein, suppresses
tumorigenesis. J Cell Biochem. 100:1376–1386. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ma W, Xia X, Stafford LJ, Yu C, Wang F,
LeSage G and Liu M: Expression of GCIP in transgenic mice decreases
susceptibility to chemical hepatocarcinogenesis. Oncogene.
25:4207–4216. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sonnenberg-Riethmacher E, Wustefeld T,
Miehe M, Trautwein C and Riethmacher D: Maid (GCIP) is involved in
cell cycle control of hepatocytes. Hepatology. 45:404–411. 2007.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Aratani S, Fujii R, Oishi T, Fujita H,
Amano T, Ohshima T, Hagiwara M, Fukamizu A and Nakajima T: Dual
roles of RNA helicase A in CREB-dependent transcription. Mol Cell
Biol. 21:4460–4469. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fujita H, Fujii R, Aratani S, Amano T,
Fukamizu A and Nakajima T: Antithetic effects of MBD2a on gene
regulation. Mol Cell Biol. 23:2645–2657. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fujita H, Aratani S, Yagishita N, Nishioka
K and Nakajima T: Identification of the inhibitory activity of
walnut extract on the E3 ligase Syvn1. Mol Med Rep. 18:5701–5708.
2018.PubMed/NCBI
|
28
|
Fujita H, Ohshima T, Oishi T, Aratani S,
Fujii R, Fukamizu A and Nakajima T: Relevance of nuclear
localization and functions of RNA helicase A. Int J Mol Med.
15:555–560. 2005.PubMed/NCBI
|
29
|
Yoshida E, Aratani S, Itou H, Miyagishi M,
Takiguchi M, Osumu T, Murakami K and Fukamizu A: Functional
association between CBP and HNF4 in trans-activation. Biochem
Biophys Res Commun. 241:664–669. 1997. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yamamoto K, Aono H, Nakajima T, Hasunuma T
and Nishioka K: Oligoclonal proliferation of human T-cell leukemia
virus type I infected lymphocytes in lesions of virus-induced
arthropathy. Biochem Biophys Res Commun. 208:1040–1045. 1995.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Yao TP, Oh SP, Fuchs M, Zhou ND, Ch'ng LE,
Newsome D, Bronson RT, Li E, Livingston DM and Eckner R: Gene
dosage-dependent embryonic development and proliferation defects in
mice lacking the transcriptional integrator p300. Cell. 93:361–372.
1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mayr B and Montminy M: Transcriptional
regulation by the phosphorylation-dependent factor CREB. Nat Rev
Mol Cell Biol. 2:599–609. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Parker D, Ferreri K, Nakajima T, LaMorte
VJ, Evans R, Koerber SC, Hoeger C and Montminy MR: Phosphorylation
of CREB at Ser-133 induces complex formation with CREB-binding
protein via a direct mechanism. Mol Cell Biol. 16:694–703. 1996.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Iavarone A, Garg P, Lasorella A, Hsu J and
Israel MA: The helix-loop-helix protein Id-2 enhances cell
proliferation and binds to the retinoblastoma protein. Genes Dev.
8:1270–1284. 1994. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lasorella A, Iavarone A and Israel MA: Id2
specifically alters regulation of the cell cycle by tumor
suppressor proteins. Mol Cell Biol. 16:2570–2578. 1996. View Article : Google Scholar : PubMed/NCBI
|
36
|
Moldes M, Boizard M, Liepvre XL, Feve B,
Dugail I and Pairault J: Functional antagonism between inhibitor of
DNA binding (Id) and adipocyte determination and differentiation
factor 1/sterol regulatory element-binding protein-1c
(ADD1/SREBP-1c) trans-factors for the regulation of fatty acid
synthase promoter in adipocytes. Biochem J. 344:873–880. 1999.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Inoue T, Shoji W and Obinata M: MIDA1, an
Id-associating protein, has two distinct DNA binding activities
that are converted by the association with Id1: A novel function of
Id protein. Biochem Biophys Res Commun. 266:147–151. 1999.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Yates PR, Atherton GT, Deed RW, Norton JD
and Sharrocks AD: Id helix-loop-helix proteins inhibit
nucleoprotein complex formation by the TCF ETS-domain transcription
factors. EMBO J. 18:968–976. 1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Balasubramanyam K, Varier RA, Altaf M,
Swaminathan V, Siddappa NB, Ranga U and Kundu TK: Curcumin, a novel
p300/CREB-binding protein-specific inhibitor of acetyltransferase,
represses the acetylation of histone/nonhistone proteins and
histone acetyltransferase-dependent chromatin transcription. J Biol
Chem. 279:51163–51171. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Choi KC, Jung MG, Lee YH, Yoon JC, Kwon
SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, et al:
Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor,
inhibits EBV-induced B lymphocyte transformation via suppression of
RelA acetylation. Cancer Res. 69:583–592. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tong KM, Shieh DC, Chen CP, Tzeng CY, Wang
SP, Huang KC, Chiu YC, Fong YC and Tang CH: Leptin induces IL-8
expression via leptin receptor, IRS-1, PI3K, Akt cascade and
promotion of NF-kappaB/p300 binding in human synovial fibroblasts.
Cell Signal. 20:1478–1488. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Seong AR, Yoo JY, Choi K, Lee MH, Lee YH,
Lee J, Jun W, Kim S and Yoon HG: Delphinidin, a specific inhibitor
of histone acetyltransferase, suppresses inflammatory signaling via
prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A
cells. Biochem Biophys Res Commun. 410:581–586. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Khoa ND, Nakazawa M, Hasunuma T, Nakajima
T, Nakamura H, Kobata T and Nishioka K: Potential role of HOXD9 in
synoviocyte proliferation. Arthritis Rheum. 44:1013–1021. 2001.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Bannister AJ and Kouzarides T: The CBP
co-activator is a histone acetyltransferase. Nature. 384:641–643.
1996. View Article : Google Scholar : PubMed/NCBI
|