1
|
Metzger BE and Coustan DR; The Organizing
Committee, : Summary and recommendations of the Fourth
International Workshop-Conference on Gestational Diabetes Mellitus.
Diabetes Care. 21 (Suppl 2):B161–B167. 1998.PubMed/NCBI
|
2
|
Johns EC, Denison FC, Norman JE and
Reynolds RM: Gestational Diabetes Mellitus: Mechanisms, Treatment,
and Complications. Trends Endocrinol Metab. 29:743–754. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hajifaraji M, Jahanjou F, Abbasalizadeh F,
Aghamohammadzadeh N, Abbasi MM and Dolatkhah N: Effect of probiotic
supplements in women with gestational diabetes mellitus on
inflammation and oxidative stress biomarkers: A randomized clinical
trial. Asia Pac J Clin Nutr. 27:581–591. 2018.PubMed/NCBI
|
4
|
Sha H, Zeng H, Zhao J and Jin H:
Mangiferin ameliorates gestational diabetes mellitus-induced
placental oxidative stress, inflammation and endoplasmic reticulum
stress and improves fetal outcomes in mice. Eur J Pharmacol.
859:1725222019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Baig S, Rizi EP, Shabeer M and Agrawal M:
Heredity of type 2 diabetes confers increased susceptibility to
oxidative stress and inflammation. BMJ Open Diabetes Res Care.
8:e0009452020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nazem MR, Asadi M, Jabbari N and Allameh
A: Effects of zinc supplementation on superoxide dismutase activity
and gene expression, and metabolic parameters in overweight type 2
diabetes patients: A randomized, double-blind, controlled trial.
Clin Biochem. 69:15–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sudharshana Murthy KA, Bhandiwada A,
Chandan SL, Gowda SL and Sindhusree G: Evaluation of Oxidative
Stress and Proinflammatory Cytokines in Gestational Diabetes
Mellitus and Their Correlation with Pregnancy Outcome. Indian J
Endocrinol Metab. 22:79–84. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Elliott HR, Sharp GC, Relton CL and Lawlor
DA: Epigenetics and gestational diabetes: a review of epigenetic
epidemiology studies and their use to explore epigenetic mediation
and improve prediction. Diabetologia. 62:2171–2178. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Vasu S, Kumano K, Darden CM, Rahman I,
Lawrence MC and Naziruddin B: MicroRNA Signatures as Future
Biomarkers for Diagnosis of Diabetes States. Cells. 8:E15332019.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao H and Tao S: miRNA-221 protects islet
beta cell function in gestational diabetes mellitus by targeting
PAK1. Biochem Biophys Res Commun. 520:218–224. 2008. View Article : Google Scholar
|
11
|
Zamanian Azodi M, Rezaei-Tavirani M,
Rezaei-Tavirani M and Robati RM: Gestational Diabetes Mellitus
Regulatory Network Identifies hsa-miR-145-5p and hsa-miR-875-5p as
Potential Biomarkers. Int J Endocrinol Metab. 17:e866402019.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Xu Q, Zhu Q, Zhou Z, Wang Y, Liu X, Yin G,
Tong X and Tu K: MicroRNA-876-5p inhibits epithelial-mesenchymal
transition and metastasis of hepatocellular carcinoma by targeting
BCL6 corepressor like 1. Biomed Pharmacother. 103:645–652. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang T, Cai X, Li Q, Xue P, Chen Z, Dong
X and Xue Y: Hsa-miR-875-5p exerts tumor suppressor function
through down-regulation of EGFR in colorectal carcinoma (CRC).
Oncotarget. 7:42225–42240. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cebula M, Schmidt EE and Arnér ES: TrxR1
as a potent regulator of the Nrf2-Keap1 response system. Antioxid
Redox Signal. 23:823–853. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kabuyama Y, Kitamura T, Yamaki J, Homma
MK, Kikuchi SI and Homma Y: Involvement of thioredoxin reductase 1
in the regulation of redox balance and viability of rheumatoid
synovial cells. Biochem Biophys Res Commun. 367:491–496. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Chang E, Kim DH, Yang H, Lee DH, Bae SH
and Park CY: CB1 receptor blockade ameliorates hepatic fat
infiltration and inflammation and increases Nrf2-AMPK pathway in a
rat model of severely uncontrolled diabetes. PLoS One.
13:e02061522018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Park HR, Lee SE, Yang H, Son GW, Jin YH
and Park YS: Induction of Thioredoxin Reductase 1 by Korean Red
Ginseng Water Extract Regulates Cytoprotective Effects on Human
Endothelial Cells. Evid Based Complement Alternat Med.
2015:9720402015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Raninga PV, Di Trapani G, Vuckovic S and
Tonissen KF: TrxR1 inhibition overcomes both hypoxia-induced and
acquired bortezomib resistance in multiple myeloma through NF-кβ
inhibition. Cell Cycle. 15:559–572. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Matsui M, Oshima M, Oshima H, Takaku K,
Maruyama T, Yodoi J and Taketo MM: Early embryonic lethality caused
by targeted disruption of the mouse thioredoxin gene. Dev Biol.
178:179–185. 1996. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shi X, Wang W, Zheng S, Zhang Q and Xu S:
Selenomethionine relieves inflammation in the chicken trachea
caused by LPS though inhibiting the NF-κB pathway. Biol Trace Elem
Res. 194:525–535. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ingram S, Mengozzi M, Heikal L, Mullen L
and Ghezzi P: Inflammation-induced reactive nitrogen species cause
proteasomal degradation of dimeric peroxiredoxin-1 in a mouse
macrophage cell line. Free Radic Res. 53:875–881. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
John CM, Ramasamy R, Al Naqeeb G,
Al-Nuaimi AH and Adam A: Nicotinamide supplementation protects
gestational diabetic rats by reducing oxidative stress and
enhancing immune responses. Curr Med Chem. 19:5181–5186. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Bateman RM, Sharpe MD, Jagger JE, Ellis
CG, Solé-Violán J, López-Rodríguez M, Herrera-Ramos E,
Ruíz-Hernández J, Borderías L, Horcajada J, et al: 36th
International Symposium on Intensive Care and Emergency Medicine:
Brussels, Belgium. 15–18 March 2016. Crit Care. 20:942016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kaushik SV, Plaisance EP, Kim T, Huang EY,
Mahurin AJ, Grandjean PW and Mathews ST: Extended-release niacin
decreases serum fetuin-A concentrations in individuals with
metabolic syndrome. Diabetes Metab Res Rev. 25:427–434. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Skórzyńska-Dziduszko KE, Kimber-Trojnar Ż,
Patro-Małysza J, Olszewska A, Zaborowski T and Małecka-Massalska T:
An Interplay between Obesity and Inflammation in Gestational
Diabetes Mellitus. Curr Pharm Biotechnol. 17:603–613. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Roca-Rodríguez MDM, López-Tinoco C,
Fernández-Deudero Á, Murri M, García-Palacios MV, García-Valero
MDA, Tinahones FJ and Aguilar-Diosdado M: Unfavorable cytokine and
adhesion molecule profiles during and after pregnancy, in women
with gestational diabetes mellitus. Endocrinol Diabetes Nutr.
64:18–25. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Poston L, Caleyachetty R, Cnattingius S,
Corvalán C, Uauy R, Herring S and Gillman MW: Preconceptional and
maternal obesity: epidemiology and health consequences. Lancet
Diabetes Endocrinol. 12:1025–1036. 2016. View Article : Google Scholar
|
29
|
Tinkov AA, Bjørklund G, Skalny AV,
Holmgren A, Skalnaya MG, Chirumbolo S and Aaseth J: The role of the
thioredoxin/thioredoxin reductase system in the metabolic syndrome:
Towards a possible prognostic marker? Cell Mol Life Sci.
75:1567–1586. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Feng Y, Feng Q, Qu H, Song X, Hu J, Xu X,
Zhang L and Yin S: Stress adaptation is associated with insulin
resistance in women with gestational diabetes mellitus. Nutr Diab.
10:42020. View Article : Google Scholar
|
31
|
Rueangdetnarong H, Sekararithi R,
Jaiwongkam T, Kumfu S, Chattipakorn N, Tongsong T and Jatavan P:
Comparisons of the oxidative stress biomarkers levels in
gestational diabetes mellitus (GDM) and non-GDM among Thai
population: cohort study. Endocrine Connect. 7:681–687. 2018.
View Article : Google Scholar
|
32
|
Zygula A, Kosinski P, Zwierzchowska A,
Sochacka M, Wroczynski P, Makarewicz-Wujec M, Pietrzak B, Wielgos
M, Rzentala M and Giebultowicz J: Oxidative stress markers in
saliva and plasma differ between diet-controlled and
insulin-controlled gestational diabetes mellitus. Diabetes Res Clin
Pract. 148:72–80. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ren X, Zou L, Lu J and Holmgren A:
Selenocysteine in mammalian thioredoxin reductase and application
of ebselen as a therapeutic. Free Radic Biol Med. 127:238–247.
2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lu J and Holmgren A: The thioredoxin
antioxidant system. Free Radic Biol Med. 66:75–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Arnér ESJ: Focus on mammalian thioredoxin
reductases - Important selenoproteins with versatile functions.
Biochim Biophys Acta. 1790:495–526. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bobba A, Casalino E, Petragallo VA and
Atlante A: Thioredoxin/thioredoxin reductase system involvement in
cerebellar granule cell apoptosis. Apoptosis. 19:1497–1508. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee
BJ, Hatfield DL and Gladyshev VN: Redox Regulation of Cell
Signaling by Selenocysteine in Mammalian Thioredoxin Reductases. J
Biol Chem. 274:24522–24530. 1999. View Article : Google Scholar : PubMed/NCBI
|
38
|
He L, He T, Farrar S, Ji L, Liu T and Ma
X: Antioxidants Maintain Cellular Redox Homeostasis by Elimination
of Reactive Oxygen Species. Cell Physiol Biochem. 44:532–553. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Calabrese V, Mancuso C, Sapienza M, Puleo
E, Calafato S, Cornelius C, Finocchiaro M, Mangiameli A, Di Mauro
M, Stella AM and Castellino P: Oxidative stress and cellular stress
response in diabetic nephropathy. Cell Stress Chaperones.
12:299–306. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chernatynskaya AV, Looney B, Hu H, Zhu X
and Xia CQ: Administration of recombinant human thioredoxin-1
significantly delays and prevents autoimmune diabetes in nonobese
diabetic mice through modulation of autoimmunity. Diabetes Metab
Res Rev. 27:809–812. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gasdaska JR, Harney JW, Gasdaska PY, Powis
G and Berry MJ: Regulation of Human Thioredoxin Reductase
Expression and Activity by 3′-Untranslated Region Selenocysteine
Insertion Sequence and mRNA Instability Elements. J Biol Chem.
274:25379–25385. 1999. View Article : Google Scholar : PubMed/NCBI
|
42
|
Rundlöf AK, Carlsten M and Arnér ESJ: The
core promoter of human thioredoxin reductase 1: Cloning,
transcriptional activity, and Oct-1, Sp1, and Sp3 binding reveal a
housekeeping-type promoter for the AU-rich element-regulated gene.
J Biol Chem. 276:30542–30551. 2001. View Article : Google Scholar : PubMed/NCBI
|