1
|
Nutten S: Atopic dermatitis: Global
epidemiology and risk factors. Ann Nutr Metab. 66 (Suppl 1):S8–S16.
2015. View Article : Google Scholar
|
2
|
Eichenfield LF, Tom WL, Chamlin SL,
Feldman SR, Hanifin JM, Simpson EL, Berger TG, Bergman JN, Cohen
DE, Cooper KD, et al: Guidelines of care for the management of
atopic dermatitis: Section 1. Diagnosis and assessment of atopic
dermatitis. J Am Acad Dermatol. 70:338–351. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Weidinger S and Novak N: Atopic
dermatitis. Lancet. 387:1109–1122. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
De Benedetto A, Kubo A and Beck LA: Skin
barrier disruption: A requirement for allergen sensitization? J
Invest Dermatol. 132:949–963. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Leung DY: New insights into atopic
dermatitis: Role of skin barrier and immune dysregulation. Allergol
Int. 62:151–161. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Leung DY: Atopic dermatitis: New insights
and opportunities for therapeutic intervention. J Allergy Clin
Immunol. 105:860–876. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Han H, Roan F and Ziegler SF: The atopic
march: Current insights into skin barrier dysfunction and
epithelial cell-derived cytokines. Immunol Rev. 278:116–130. 2017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kasperkiewicz M, Schmidt E, Ludwig RJ and
Zillikens D: Targeting IgE antibodies by immunoadsorption in atopic
dermatitis. Front Immunol. 9:2542018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jeruzal-Świątecka J, Fendler W and
Pietruszewska W: Clinical role of extraoral bitter taste receptors.
Int J Mol Sci. 21:51562020. View Article : Google Scholar
|
10
|
Workman AD, Palmer JN, Adappa ND and Cohen
NA: The role of bitter and sweet taste receptors in upper airway
immunity. Curr Allergy Asthma Rep. 15:722015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Deshpande DA, Wang WCH, McIlmoyle EL,
Robinett KS, Schillinger RM, An SS, Sham JS and Liggett SB: Bitter
taste receptors on airway smooth muscle bronchodilate by localized
calcium signaling and reverse obstruction. Nat Med. 16:1299–1304.
2010. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Orsmark-Pietras C, James A, Konradsen JR,
Nordlund B, Söderhäll C, Pulkkinen V, Pedroletti C, Daham K,
Kupczyk M, Dahlén B, et al: Transcriptome analysis reveals
upregulation of bitter taste receptors in severe asthmatics. Eur
Respir J. 42:65–78. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ekoff M, Choi JH, James A, Dahlén B,
Nilsson G and Dahlén SE: Bitter taste receptor (TAS2R) agonists
inhibit IgE-dependent mast cell activation. J Allergy Clin Immunol.
134:475–478. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tomic S: L'Analyse chimique des végétaux:
Le cas du quinquina. Ann Sci. 58:287–309. 2001. View Article : Google Scholar
|
15
|
Achan J, Talisuna AO, Erhart A, Yeka A,
Tibenderana JK, Baliraine FN, Rosenthal PJ and D'Alessandro U:
Quinine, an old anti-malarial drug in a modern world: Role in the
treatment of malaria. Malar J. 10:1442011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tse EG, Korsik M and Todd MH: The past,
present and future of anti-malarial medicines. Malar J. 18:932019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Gachelin G, Garner P, Ferroni E, Tröhler U
and Chalmers I: Evaluating Cinchona bark and quinine for treating
and preventing malaria. J R Soc Med. 110:31–40. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sharma P, Yi R, Nayak AP, Wang N, Tang F,
Knight MJ, Pan S, Oliver B and Deshpande DA: Bitter taste receptor
agonists mitigate features of allergic asthma in mice. Sci Rep.
7:461662017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shaw L, Mansfield C, Colquitt L, Lin C,
Ferreira J, Emmetsberger J and Reed DR: Personalized expression of
bitter ‘taste’ receptors in human skin. PLoS One. 13:e02053222018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang H, Jung EM, Ahn C, Lee GS, Lee SY,
Kim SH, Choi IG, Park MJ, Lee SS, Choi DH and Jeung EB: Elemol from
chamaecyparis obtusa ameliorates 2,4-dinitrochlorobenzene-induced
atopic dermatitis. Int J Mol Med. 36:463–472. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Caglayan Sozmen S, Karaman M, Cilaker
Micili S, Isik S, Arikan Ayyildiz Z, Bagriyanik A, Uzuner N and
Karaman O: Resveratrol ameliorates 2,4-dinitrofluorobenzene-induced
atopic dermatitis-like lesions through effects on the epithelium.
PeerJ. 4:e18892016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yamamoto M, Haruna T, Yasui K, Takahashi
H, Iduhara M, Takaki S, Deguchi M and Arimura A: A novel atopic
dermatitis model induced by topical application with
dermatophagoides farinae extract in NC/Nga mice. Allergol Int.
56:139–148. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
National Institutes of Health, . Guide for
the care and use of laboratory animals. 7th edition. Washington DC:
National Academy Press; 1996
|
24
|
Jin W, Huang W, Chen L, Jin M, Wang Q, Gao
Z and Jin Z: Topical application of JAK1/JAK2 inhibitor momelotinib
exhibits significant anti-inflammatory responses in DNCB-induced
atopic dermatitis model mice. Int J Mol Sci. 19:39732018.
View Article : Google Scholar
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Grewe M, Bruijnzeel-Koomen CA, Schöpf E,
Thepen T, Langeveld-Wildschut AG, Ruzicka T and Krutmann J: A role
for Th1 and Th2 cells in the immunopathogenesis of atopic
dermatitis. Immunol Today. 19:359–361. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yatoo MI, Gopalakrishnan A, Saxena A,
Parray OR, Tufani NA, Chakraborty S, Tiwari R, Dhama K and Iqbal
HMN: Anti-inflammatory drugs and herbs with special emphasis on
herbal medicines for countering inflammatory diseases and
disorders-a review. Recent Pat Inflamm Allergy Drug Discov.
12:39–58. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lambrecht BN, Hammad H and Fahy JV: The
cytokines of asthma. Immunity. 50:975–991. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Igawa S, Kishibe M, Minami-Hori M, Honma
M, Tsujimura H, Ishikawa J, Fujimura T, Murakami M and
Ishida-Yamamoto A: Incomplete KLK7 secretion and upregulated LEKTI
expression underlie hyperkeratotic stratum corneum in atopic
dermatitis. J Invest Dermatol. 137:449–456. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Guo CJ, Mack MR, Oetjen LK, Trier AM,
Council ML, Pavel AB, Guttman-Yassky E, Kim BS and Liu Q:
Kallikrein 7 promotes atopic dermatitis-associated itch
independently of skin inflammation. J Invest Dermatol.
140:1244–1252.e4. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mukherjee SP, Quintas PO, McNulty R,
Komives EA and Dyson HJ: Structural characterization of the ternary
complex that mediates termination of NF-κB signaling by IκBα. Proc
Natl Acad Sci USA. 113:6212–6217. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Shanks GD: Historical review: Problematic
malaria prophylaxis with quinine. Am J Trop Med Hyg. 95:269–272.
2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jeong CW, Ahn KS, Rho NK, Park YD, Lee DY,
Lee JH, Lee ES and Yang JM: Differential in vivo cytokine mRNA
expression in lesional skin of intrinsic vs extrinsic atopic
dermatitis patients using semiquantitative RT-PCR. Clin Exp
Allergy. 33:1717–1724. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Callard RE and Harper JI: The skin
barrier, atopic dermatitis and allergy: A role for Langerhans
cells? Trends Immunol. 28:294–298. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jakasa I, de Jongh CM, Verberk MM, Bos JD
and Kezić S: Percutaneous penetration of sodium lauryl sulphate is
increased in uninvolved skin of patients with atopic dermatitis
compared with control subjects. Br J Dermatol. 155:104–109. 2006.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Naeem AS, Tommasi C, Cole C, Brown SJ, Zhu
Y, Way B, Willis Owen SA, Moffatt M, Cookson WO, Harper JI, et al:
A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine
thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls
filaggrin expression and processing in skin, a novel mechanism for
skin barrier disruption in patients with atopic dermatitis. J
Allergy Clin Immunol. 139:1228–1241. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Komatsu N, Saijoh K, Kuk C, Liu AC, Khan
S, Shirasaki F, Takehara K and Diamandis EP: Human tissue
kallikrein expression in the stratum corneum and serum of atopic
dermatitis patients. Exp Dermatol. 16:513–519. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Briot A, Deraison C, Lacroix M, Bonnart C,
Robin A, Besson C, Dubus P and Hovnanian A: Kallikrein 5 induces
atopic dermatitis-like lesions through PAR2-mediated thymic stromal
lymphopoietin expression in Netherton syndrome. J Exp Med.
206:1135–1147. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Barnes PJ and Karin M: Nuclear
factor-kappaB: A pivotal transcription factor in chronic
inflammatory diseases. N Engl J Med. 336:1066–1071. 1997.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Fisher CL, Pineault N, Brookes C, Helgason
CD, Ohta H, Bodner C, Hess JL, Humphries RK and Brock HW:
Loss-of-function additional sex combs like 1 mutations disrupt
hematopoiesis but do not cause severe myelodysplasia or leukemia.
Blood. 115:38–46. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sue SC, Alverdi V, Komives EA and Dyson
HJ: Detection of a ternary complex of NF-kappaB and IkappaBalpha
with DNA provides insights into how IkappaBalpha removes NF-kappaB
from transcription sites. Proc Natl Acad Sci USA. 108:1367–1372.
2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hayden MS and Ghosh S: Signaling to
NF-kappaB. Genes Dev. 18:2195–2224. 2004. View Article : Google Scholar : PubMed/NCBI
|