1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Llovet JM, Zucman-Rossi J, Pikarsky E,
Sangro B, Schwartz M, Sherman M and Gores G: Hepatocellular
carcinoma. Nat Rev Dis Primers. 2:160182016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xiang X, Zhong JH, Wang YY, You XM, Ma L,
Xiang BD and Li LQ: Distribution of tumor stage and initial
treatment modality in patients with primary hepatocellular
carcinoma. Clin Transl Oncol. 19:891–897. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Han J, Wang F, Lan Y, Wang J, Nie C, Liang
Y, Song R, Zheng T, Pan S, Pei T, et al: KIFC1 regulated by
miR-532-3p promotes epithelial-to-mesenchymal transition and
metastasis of hepatocellular carcinoma via gankyrin/AKT signaling.
Oncogene. 38:406–420. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vilchez V, Turcios L, Marti F and Gedaly
R: Targeting Wnt/beta-catenin pathway in hepatocellular carcinoma
treatment. World J Gastroenterol. 22:823–832. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Saran U, Humar B, Kolly P and Dufour JF:
Hepatocellular carcinoma and lifestyles. J Hepatol. 64:203–214.
2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ozakyol A: Global epidemiology of
hepatocellular carcinoma (HCC epidemiology). J Gastrointest Cancer.
48:238–240. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Serper M, Taddei TH, Mehta R, D'Addeo K,
Dai F, Aytaman A, Baytarian M, Fox R, Hunt K, Goldberg DS, et al:
Association of provider specialty and multidisciplinary care with
hepatocellular carcinoma treatment and mortality. Gastroenterology.
152:1954–1964. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cheng D, Deng J, Zhang B, He X, Meng Z, Li
G, Ye H, Zheng S, Wei L, Deng X, et al: lncRNA HOTAIR
epigenetically suppresses miR-122 expression in hepatocellular
carcinoma via DNA methylation. EBioMedicine. 36:159–170. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Bukhari SA, Yasmin A, Zahoor MA, Mustafa
G, Sarfraz I and Rasul A: Secreted frizzled-related protein 4 and
its implication in obesity and type-2 diabetes. IUBMB Life.
71:1701–1710. 2019. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Agostino M, Pohl S and Dharmarajan A:
Structure-based prediction of Wnt binding affinities for
Frizzled-type cysteine-rich domains. J Biol Chem. 292:11218–11229.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Feng Han Q, Zhao W, Bentel J, Shearwood
AM, Zeps N, Joseph D, Iacopetta B and Dharmarajan A: Expression of
sFRP-4 and beta-catenin in human colorectal carcinoma. Cancer Lett.
231:129–137. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Deshmukh A, Arfuso F, Newsholme P and
Dharmarajan A: Regulation of cancer stem cell metabolism by
secreted frizzled-related protein 4 (sFRP4). Cancers (Basel).
10:402018. View Article : Google Scholar
|
14
|
Wang H, Duan XL, Qi XL, Meng L, Xu YS, Wu
T and Dai PG: Concurrent hypermethylation of SFRP2 and
DKK2 activates the Wnt/β-catenin pathway and is associated
with poor prognosis in patients with gastric cancer. Mol Cells.
40:45–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ford CE, Jary E, Ma SS, Nixdorf S,
Heinzelmann-Schwarz VA and Ward RL: The Wnt gatekeeper SFRP4
modulates EMT, cell migration and downstream Wnt signalling in
serous ovarian cancer cells. PLoS One. 8:e543622013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Brebi P, Hoffstetter R, Andana A, Ili CG,
Saavedra K, Viscarra T, Retamal J, Sanchez R and Roa JC: Evaluation
of ZAR1 and SFRP4 methylation status as potentials biomarkers for
diagnosis in cervical cancer: Exploratory study phase I.
Biomarkers. 19:181–188. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
He B, Lee AY, Dadfarmay S, You L, Xu Z,
Reguart N, Mazieres J, Mikami I, McCormick F and Jablons DM:
Secreted frizzled-related protein 4 is silenced by hypermethylation
and induces apoptosis in beta-catenin-deficient human mesothelioma
cells. Cancer Res. 65:743–748. 2005.PubMed/NCBI
|
18
|
Pereira TDSF, Diniz MG, França JA, Moreira
RG, Menezes GHF, Sousa SF, Castro WH, Gomes CC and Gomez RS: The
Wnt/β-catenin pathway is deregulated in cemento-ossifying fibromas.
Oral Surg Oral Med Oral Pathol Oral Radiol. 125:172–178. 2018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Sandsmark E, Andersen MK, Bofin AM,
Bertilsson H, Drabløs F, Bathen TF, Rye MB and Tessem MB: SFRP4
gene expression is increased in aggressive prostate cancer. Sci
Rep. 7:142762017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang MW, Tao LY, Yang JY, Jiang YS, Fu XL,
Liu W, Huo YM, Li J, Zhang JF, Hua R, et al: SFRP4 is a prognostic
marker and correlated with Treg cell infiltration in pancreatic
ductal adenocarcinoma. Am J Cancer Res. 9:363–377. 2019.PubMed/NCBI
|
21
|
Nfonsam LE, Jandova J, Jecius HC, Omesiete
PN and Nfonsam VN: SFRP4 expression correlates with
epithelial mesenchymal transition-linked genes and poor overall
survival in colon cancer patients. World J Gastrointest Oncol.
11:589–598. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang D, Yu B, Deng Y, Sheng W, Peng Z,
Qin W and Du X: SFRP4 was overexpressed in colorectal carcinoma. J
Cancer Res Clin Oncol. 136:395–401. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu C, Zeng XH, Wang L, Tao SQ, Wu QX, Zhu
P, Deng GH and Wang YM: sFRP-4, a potential novel serum marker for
chronic hepatitis B-related hepatocellular carcinoma. Hepatobiliary
Pancreat Dis Int. 14:164–170. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen J, Rajasekaran M and Hui KM: Atypical
regulators of Wnt/β-catenin signaling as potential therapeutic
targets in Hepatocellular Carcinoma. Exp Biol Med (Maywood).
242:1142–1149. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rao TP and Kuhl M: An updated overview on
Wnt signaling pathways: A prelude for more. Circ Res.
106:1798–1806. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang W, Li S, Liu P, Sideras K, van de
Werken HJG, van der Heide M, Cao W, Lavrijsen M, Peppelenbosch MP,
Bruno M, et al: Oncogenic STRAP supports hepatocellular carcinoma
growth by enhancing Wnt/β-catenin signaling. Mol Cancer Res.
17:521–531. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhan T, Rindtorff N and Boutros M: Wnt
signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Duchartre Y, Kim YM and Kahn M: The Wnt
signaling pathway in cancer. Crit Rev Oncol Hematol. 99:141–149.
2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang R, Wu Y, Huang W and Chen W:
MicroRNA-940 Targets INPP4A or GSK3beta and Activates the
Wnt/beta-Catenin pathway to regulate the malignant behavior of
bladder cancer Cells. Oncol Res. 26:145–155. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao
Y, Cheng Y, Yang M, Wang Q, Feng X, et al: miRNA-194 activates the
Wnt/β-catenin signaling pathway in gastric cancer by targeting the
negative Wnt regulator, SUFU. Cancer Lett. 385:117–127. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Ren Y, Tao J, Jiang Z, Guo D and Tang J:
Pimozide suppresses colorectal cancer via inhibition of
Wnt/beta-catenin signaling pathway. Life Sci. 209:267–273. 2018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang J, Hu SL, Qiao CH, Ye JF, Li M, Ma
HM, Wang JH, Xin SY and Yuan ZL: lncRNA-NEF inhibits proliferation,
migration and invasion of esophageal squamous-cell carcinoma cells
by inactivating wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci.
22:6824–6831. 2018.PubMed/NCBI
|
33
|
Zhou P, Li Y, Li B, Zhang M, Liu Y, Yao Y
and Li D: NMIIA promotes tumor growth and metastasis by activating
the Wnt/β-catenin signaling pathway and EMT in pancreatic cancer.
Oncogene. 38:5500–5515. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hu Z, Wang P, Lin J, Zheng X, Yang F,
Zhang G, Chen D, Xie J, Gao Z, Peng L and Xie C: MicroRNA-197
promotes metastasis of hepatocellular carcinoma by activating
Wnt/β-catenin signaling. Cell Physiol Biochem. 51:470–486. 2018.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Song J, Xie C, Jiang L, Wu G, Zhu J, Zhang
S, Tang M, Song L and Li J: Transcription factor AP-4 promotes
tumorigenic capability and activates the Wnt/β-catenin pathway in
hepatocellular carcinoma. Theranostics. 8:3571–3583. 2018.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang Q, Lv Q, Bian H, Yang L, Guo KL, Ye
SS, Dong XF and Tao LL: A novel tumor suppressor SPINK5 targets
Wnt/β-catenin signaling pathway in esophageal cancer. Cancer Med.
8:2360–2371. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Shin H, Kim JH, Lee YS and Lee YC: Change
in gene expression profiles of secreted frizzled-related proteins
(SFRPs) by sodium butyrate in gastric cancers: Induction of
promoter demethylation and histone modification causing inhibition
of Wnt signaling. Int J Oncol. 40:1533–1542. 2012.PubMed/NCBI
|
39
|
Pannone G, Bufo P, Santoro A, Franco R,
Aquino G, Longo F, Botti G, Serpico R, Cafarelli B, Abbruzzese A,
et al: WNT pathway in oral cancer: Epigenetic inactivation of
WNT-inhibitors. Oncol Rep. 24:1035–1041. 2010.PubMed/NCBI
|
40
|
Deshmukh A, Arfuso F, Newsholme P and
Dharmarajan A: Epigenetic demethylation of sFRPs, with emphasis on
sFRP4 activation, leading to Wnt signalling suppression and histone
modifications in breast, prostate, and ovary cancer stem cells. Int
J Biochem Cell Biol. 109:23–32. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Perumal V, Dharmarajan AM and Fox SA: The
Wnt regulator SFRP4 inhibits mesothelioma cell proliferation,
migration, and antagonizes Wnt3a via its netrin-like domain. Int J
Oncol. 51:362–368. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Pawar NM and Rao P: Secreted frizzled
related protein 4 (sFRP4) update: A brief review. Cell Signal.
45:63–70. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bhuvanalakshmi G, Arfuso F, Millward M,
Dharmarajan A and Warrier S: Secreted frizzled-related protein 4
inhibits glioma stem-like cells by reversing epithelial to
mesenchymal transition, inducing apoptosis and decreasing cancer
stem cell properties. PLoS One. 10:e01275172015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bhuvanalakshmi G, Gamit N, Patil M, Arfuso
F, Sethi G, Dharmarajan A, Kumar AP and Warrier S: Stemness,
pluripotentiality, and Wnt antagonism: sFRP4, a wnt antagonist
mediates pluripotency and stemness in glioblastoma. Cancers
(Basel). 11:252018. View Article : Google Scholar
|
45
|
Takagi H, Sasaki S, Suzuki H, Toyota M,
Maruyama R, Nojima M, Yamamoto H, Omata M, Tokino T, Imai K and
Shinomura Y: Frequent epigenetic inactivation of SFRP genes in
hepatocellular carcinoma. J Gastroenterol. 43:378–389. 2008.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Yu J, Xie Y, Li M, Zhou F, Zhong Z, Liu Y,
Wang F and Qi J: Association between SFRP promoter hypermethylation
and different types of cancer: A systematic review and
meta-analysis. Oncol Lett. 18:3481–3492. 2019.PubMed/NCBI
|
47
|
Zhang T, Ma Z, Liu L, Sun J, Tang H, Zhang
B, Zou Y and Li H: DDX39 promotes hepatocellular carcinoma growth
and metastasis through activating Wnt/β-catenin pathway. Cell Death
Dis. 9:6752018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lin J, Lin W, Ye Y, Wang L, Chen X, Zang S
and Huang A: Kindlin-2 promotes hepatocellular carcinoma invasion
and metastasis by increasing Wnt/β-catenin signaling. J Exp Clin
Cancer Res. 36:1342017. View Article : Google Scholar : PubMed/NCBI
|
49
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Katoh M and Katoh M: WNT signaling pathway
and stem cell signaling network. Clin Cancer Res. 13:4042–4045.
2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan
J, Wu J and Li M: MicroRNA-374a activates Wnt/β-catenin signaling
to promote breast cancer metastasis. J Clin Invest. 123:566–579.
2013.PubMed/NCBI
|
52
|
Fang L, Cai J, Chen B, Wu S, Li R, Xu X,
Yang Y, Guan H, Zhu X, Zhang L, et al: Aberrantly expressed
miR-582-3p maintains lung cancer stem cell-like traits by
activating Wnt/β-catenin signalling. Nat Commun. 6:86402015.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Peng Y, Zhang X, Feng X, Fan X and Jin Z:
The crosstalk between microRNAs and the Wnt/beta-catenin signaling
pathway in cancer. Oncotarget. 8:14089–14106. 2017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Staal FJ and Clevers H: Tcf/Lef
transcription factors during T-cell development: Unique and
overlapping functions. Hematol J. 1:3–6. 2000. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kramps T, Peter O, Brunner E, Nellen D,
Froesch B, Chatterjee S, Murone M, Züllig S and Basler K:
Wnt/wingless signaling requires BCL9/legless-mediated recruitment
of pygopus to the nuclear beta-catenin-TCF complex. Cell.
109:47–60. 2002. View Article : Google Scholar : PubMed/NCBI
|
56
|
Warrier S, Bhuvanalakshmi G, Arfuso F,
Rajan G, Millward M and Dharmarajan A: Cancer stem-like cells from
head and neck cancers are chemosensitized by the Wnt antagonist,
sFRP4, by inducing apoptosis, decreasing stemness, drug resistance
and epithelial to mesenchymal transition. Cancer Gene Ther.
21:381–388. 2014. View Article : Google Scholar : PubMed/NCBI
|