1
|
Vender RL: Chronic hypoxic pulmonary
hypertension. Chest. 106:236–243. 1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Greyson CR: Pathophysiology of right
ventricular failure. Crit Care Med. 36 (Suppl 1):S57–S65. 2018.
View Article : Google Scholar
|
3
|
Humbert M, Morrell NW, Archer SL, Stenmark
KP, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O,
Voelkel FN and Rabinovitch M: Cellular and molecular pathobiology
of pulmonary arterial hypertension. J Am Coll Cardiol. 43 (Suppl
12):S13–S24. 2014. View Article : Google Scholar
|
4
|
Morrell NW, Adnot S, Archer SL, Dupuis J,
Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA,
Weissmann N, et al: Cellular and molecular basis of pulmonary
arterial hypertension. J Am Coll Cardiol. 54 (Suppl 1):S20–S31.
2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tuder RM, Archer SL, Dorfmuller P, Erzurum
SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R,
Stenmark KR and Morrell NW: Relevant issues in the pathology and
pathobiology of pulmonary hypertension. J Am Coll Cardiol. 62
(Suppl 25):D4–D12. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Peacock AJ, Murphy NF, McMurray JJ,
Caballero L and Stewart S: An epidemiological study of pulmonary
arterial hypertension. Eur Respir J. 30:104–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Montani D, Chaumais MC, Guignabert C,
Günther S, Girerd B, Jaïs X, Algalarrondo V, Price LC, Savale L,
Sitbon O, et al: Targeted therapies in pulmonary arterial
hypertension. Pharmacol Ther. 141:172–191. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rabinovitch M, Guignabert C, Humbert M and
Nicolls MR: Inflammation and immunity in the pathogenesis of
pulmonary arterial hypertension. Circ Res. 115:165–175. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ahmed LA, Obaid AA, Zaki HF and Agha AM:
Role of oxidative stress, inflammation, nitric oxide and
transforming growth factor-beta in the protective effect of
diosgenin in monocrotaline-induced pulmonary hypertension in rats.
Eur J Pharmacol. 740:379–387. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Satoh K, Satoh T, Kikuchi N, Omura J,
Kurosawa R, Suzuki K, Sugimura K, Aoki T, Nochioka K, Tatebe S, et
al: Basigin mediates pulmonary hypertension by promoting
inflammation and vascular smooth muscle cell proliferation. Circ
Res. 115:738–750. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang Y and Wu S: Effects of fasudil on
pulmonary hypertension in clinical practice. Pulm Pharmacol Ther.
46:54–63. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu C, Fang C, Cao G, Liu K, Wang B, Wan
Z, Li S and Wu S: Ethyl pyruvate ameliorates monocrotaline-induced
pulmonary arterial hypertension in rats. J Cardiovasc Pharmacol.
64:7–15. 2017. View Article : Google Scholar
|
13
|
Balabanian K, Foussat A, Dorfmüller P,
Durand-Gasselin I, Capel F, Bouchet-Delbos L, Portier A,
Marfaing-Koka A, Krzysiek R, Rimaniol AC, et al: CX(3)C chemokine
fractalkine in pulmonary arterial hypertension. Am J Respir Crit
Care Med. 165:1419–1425. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang Q, Fan K, Wang P, Yu J, Liu R, Qi H,
Sun H and Cao Y: Carvacrol induces the apoptosis of pulmonary
artery smooth muscle cells under hypoxia. Eur J Pharmacol.
770:134–146. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu Y and Hu CN: Effects of Maher
BbeChatain on the expression of transforming growth factor-1 and
connective tissue growth factor in diabetic rats. Chin J Geriat
Med. 34:6691–6693. 2014.
|
16
|
Joshua DS, Andrew WH and Jackson R:
AMP-activated protein kinase inhibits transforming growth
factor-β-mediated vascular smooth muscle cell growth: Implications
for a Smad-3-dependent mechanism. Am J Physiol Heart Circ Physiol.
309:H1251–H1259. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kwon IS, Yim JH, Lee HK and Pyo S: Lobaric
acid inhibits VCAM-1 expression in TNF-α-etimulated vascular smooth
muscle cells via modulation of NF-κB and MAPK signaling pathways.
Biomol Ther (Seoul). 24:25–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xu Y, Gu Q and Qu C: Capsaicin
pretreatment reversed pulmonary arterial hypertension by
alleviating inflammation via p38MAPK pathway. Ex Lung Res. 43:8–18.
2017. View Article : Google Scholar
|
19
|
Ding M, Feng R, Wang SY, Bowman L, Lu Y,
Qian Y, Castranova V, Jiang BL and Shi X: Cyanidin-3-glucoside, a
natural product derived from blackberry, exhibits chemopreventive
and chemotherapeutic activity. J Biol Chem. 281:17359–17368. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Fang J: Bioavailability of anthocyanins.
Drug Metab Rev. 46:508–520. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kong JM, Chia LS, Goh NK, Chia TF and
Brouillard R: Analysis and biological activities of anthocyanins.
Phytochemistry. 64:923–933. 2008. View Article : Google Scholar
|
22
|
Herath HM, Takano-Ishikawa Y and Yamaki K:
Inhibitory effect of some flavonoids on tumor necrosis factor-alpha
production in lipopolysaccharide-stimulated mouse macrophage cell
line J774.1. J Med Food. 6:365–370. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xia XD, Ling WH, Ma J, Xia M, Hou MJ, Wang
Q, Zhu HL and Tang ZH: Anthocyanin-rich extract from black rice
enhances atherosclerotic slaque stabilization in apolipoprotein
E-deficient mice. J Nutr. 136:2220–2225. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang DL, Wei X, Yan X, Jin T and Ling WH:
Protocatechuic acid, a metabolite of anthocyanins, inhibits
monocyte adhesion and reduces atherosclerosis in apolipoprotein
E-deficient mice. J Agric Food Chem. 58:12722–12728. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu Y, Wang X, Pang J, Zhang HY, Luo J,
Qian XY, Chen Q and Ling WH: Attenuation of atherosclerosis by
protocatechuic acid via inhibition of M1 and promotion of M2
macrophage polarization. J Agric Food Chem. 67:807–818. 2019.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Dell'Agli M, Busciala A and Bosisio E:
Vascular effects of wine polyphenols. Cardiovasc Res. 63:593–602.
2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xia M, Ling WH, Zhu HL, Ma J, Wang Q, Hou
MJ, Tang ZH, Guo HH, Liu C and Ye QY: Anthocyanin attenuates
CD40-mediated endothelial cell activation and apoptosis by
inhibiting CD40-induced MAPK activation. Atherosclerosis.
202:41–47. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Mao GX, Zheng LD, Cao YB, Chen ZM, Lv YD,
Wang YZ, Hu XL, Wang GF and Yan J: Antiaging effect of pine pollen
in human diploid fibroblasts and in a mouse model induced by
D-Galactose. Oxid Med Cell Longev. 2012:7509632012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kylhammar D, Hesselstrand R, Nielsen S,
Scheele C and Rådegran G: Angiogenic and inflammatory biomarkers
for screening and follow-up in patients with pulmonary arterial
hypertension. Scand J Rheumatol. 47:319–324. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Appelmann I, Liersch R, Kessler T, Mesters
RM and Berdel WE: Angiogenesis inhibition in cancer therapy:
Platelet-derived growth factor (PDGF) and vascular endothelial
growth factor (VEGF) and their receptors: Biological functions and
role in malignancy. Recent Results Cancer Res. 180:51–81. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhu N, Zhao X, Xiang Y, Ye S, Huang J, Hu
W, Lv L and Zeng C: Thymoquinone attenuates monocrotaline-induced
pulmonary artery hypertension via inhibiting pulmonary arterial
remodeling in rats. Int J Cardiol. 221:587–596. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Maarman G, Lecour S, Butrous G, Thienemann
F and Sliwa K: A comprehensive review: The evolution of animal
models in pulmonary hypertension research; are we there yet? Pulm
Circ. 3:739–756. 2013. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Wang D, Zou T, Yang Y, Yan X and Ling W:
Cyanidin-3-O-β-glucoside with the aid of its metabolite
protocatechuic acid, reduces monocyte infiltration in
apolipoprotein E-deficient mice. Biochem. Pharmacol. 7:713–719.
2011.
|
35
|
Yan XR, Wu L, Li B, Meng XJ, Dai HP, Zheng
YN and Fu JF: Cyanidin-3-O-glucoside attenuates acute lung injury
in sepsis rats. J Surg Res. 199:592–600. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Qian XY, Wang X, Luo J, Liu Y, Pang J,
Zhang HY, Xu ZL, Xie JW, Jiang XW and Ling WH: Hypouricemic and
nephroprotective roles of anthocyanins in hyperuricemic mice. Food
Func. 10:867–878. 2019. View Article : Google Scholar
|
37
|
Joppa P, Petrasova D, Stancak B and
Tkacova R: Systemic inflammation in patients with COPD and
pulmonary hypertension. Chest. 130:326–333. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Price LC, Wort SJ, Perros F, Dorfmuller P,
Huertas A, Montani D, Cohen-Kaminsky S and Humbert M: Inflammation
in pulmonary arterial hypertension. Chest. 141:210–221. 2012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Fukumoto Y: Role of the Rho-kinase pathway
in pulmonary arterial hypertension. Nihon Yakurigaku Zasshi.
143:178–181. 2014.(In Japanese). View Article : Google Scholar : PubMed/NCBI
|
40
|
Irarrázaval S, Allard J, Campodónico J,
Perez D, Strobel P, Vasquez L, Urquiaga I, Echeverria G and
Leighton F: Oxidative stress in acute hypobaric hypoxia. High Alt
Med Biol. 18:128–134. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen J, Wang YX, Dong MQ, Zhang B, Luo Y,
Niu W and Li ZC: Reoxygenation reverses hypoxic pulmonary arterial
remodeling by inducing smooth muscle cell apoptosis via reactive
oxygen species-mediated mitochondrial dysfunction. Am Heart Assoc.
6:e0056022017.
|
42
|
Suresh K, Servinsky L, Jiang HY, Bigham Z,
Yun X, Kliment C, Huetsch J, Damarla M and Shimoda LA: Reactive
oxygen species induced Ca2+ influx via TRPV4 and
microvascular endothelial dysfunction in the SU5416/hypoxia model
of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol
Physiol. 314:L893–L907. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zeng JW, Chen BY, Lv XF, Sun L, Zeng XL,
Zheng HQ, Du YH, Wang GL, Ma MM and Guan YY: Transmembrane member
16A participates in hydrogen peroxide-induced apoptosis by
facilitating mitochondria-dependent pathway in vascular smooth
muscle cells. Br J Pharmacol. 175:3669–3684. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hisayama T, Inomoto M, Hioki Y and Fukui
H: Identification of PKC isozymes and effect of knockdown of PKC
alpha by antisense oligodeoxynucleotide on iNOS expression via
interleukin-1 receptor in vascular smooth muscle cells. Nihon
Yakurigaku Zasshi. 114 (Suppl 1):86P–91P. 1999.(In Japanese).
View Article : Google Scholar : PubMed/NCBI
|
45
|
Fan Z, Liu B, Zhang S, Liu H, Li Y, Wang
D, Liu Y, Li J, Wang N, Liu Y and Zhang B: YM155, a selective
survivin inhibitor, reverses chronic hypoxic pulmonary hypertension
in rats via upregulating voltage-gated potassium channels. Clin Exp
Hypertens. 37:381–387. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Manach C, Mazur A and Scalbert A:
Polyphenols and prevention of cardiovascular diseases. Curr Opin
Lipidol. 16:77–84. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Xia M, Hou M, Zhu H, Ma J, Tang Z, Wang Q,
Li Y, Chi D, Yu X, Zhao T, et al: Anthocyanins induce cholesterol
efflux from mouse peritoneal macrophages: The role of the
peroxisome proliferator-activated receptor {gamma}-liver X receptor
{alpha}-ABCA1 pathway. J Biol Chem. 280:36792–36801. 2005.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhu Y, Xia M, Yang Y, Liu F, Li Z, Hao YT,
Mi MT, Jin T and Ling WH: Purified anthocyanin supplementation
improves endothelial function via NO-cGMP activation in
hypercholesterolemic individuals. Clin Chem. 57:1524–1533. 2011.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Edirisinghe I, Banaszewski K, Cappozzo J,
McCarthy D and Burton-Freeman BM: Effect of black currant
anthocyanins on the activation of endothelial nitric oxide synthase
(eNOS) in vitro in human endothelial cells. J Agric Food Chem.
59:8616–8624. 2013. View Article : Google Scholar
|
50
|
Sun XZ, Tian XY, Wang DW and Li J: Effects
of fasudil on hypoxic pulmonary hypertension and pulmonary vascular
remodeling in rats. Eur Rev Med Pharmacol Sci. 18:959–964.
2014.PubMed/NCBI
|
51
|
Sim JY: Nitric oxide and pulmonary
hypertension. Korean J Anesthesiol. 58:4–14. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Polonio IB, Acencio MM, Pazetti R, Almeida
FM, Silva BS, Pereira KA and Souza R: Lodenafil treatment in the
monocrotaline model of pulmonary hypertension in rats. J Bras
Pneumol. 40:421–424. 2014.(In English, Portuguese). View Article : Google Scholar : PubMed/NCBI
|
53
|
Satwiko MG, Ikeda K, Nakayama K, Yagi K,
Hocher B, Hirata K and Emoto N: Targeted activation of endothelin-1
exacerbates hypoxia-induced pulmonary hypertension. Biochem Biophys
Res Commun. 465:356–362. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wardle AJ, Seager MJ, Wardle R, Tulloh RM
and Gibbs JS: Guanylate cyclase stimulators for pulmonary
hypertension. Cochrane Database Syst Rev. 8:CD0112052016.
|
55
|
Hoeper MM, McLaughlin VV, Dalaan AM, Satoh
T and Galie N: Treatment of pulmonary hypertension. Lancet Respir
Med. 4:323–336. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yu L, Tu Y, Jia X, Fang K, Liu L, Wan L,
Xiang C, Wang Y, Sun X, Liu T, et al: Resveratrol protects against
pulmonary arterial hypertension in rats via activation of silent
information regulator 1. Cell Physiol Biochem. 42:55–67. 2017.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhou S, Li MT, Jia YY, Liu JJ, Wang Q,
Tian Z, Liu YT, Chen HZ, Liu DP and Zeng XF: Regulation of cell
cycle regulators by SIRT1 contributes to resveratrol-mediated
prevention of pulmonary arterial hypertension. Biomed Res Int.
2015:7623492015. View Article : Google Scholar : PubMed/NCBI
|
58
|
Rashid S, Idris-Khodja N, Auger C, Kevers
C, Pincemail J, Alhosin M, Boehm N, Oswald-Mammosser M and
Schini-Kerth VB: Polyphenol-rich blackcurrant juice prevents
endothelial dysfunction in the mesenteric artery of cirrhotic rats
with portal hypertension: Role of oxidative stress and the
angiotensin system. J Med Food. 21:390–399. 2018. View Article : Google Scholar : PubMed/NCBI
|
59
|
Hua C, Zhao J, Wang H, Chen F, Meng H,
Chen L, Zhang Q, Yan J and Yuan L: Apple polyphenol relieves
hypoxia-induced pulmonary arterial hypertension via pulmonary
endothelium protection and smooth muscle relaxation: In vivo and in
vitro studies. Biomed Pharmacother. 107:937–944. 2018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Zhang N, Dong MQ, Luo Y, Zhao F and Li YJ:
Danshensu prevents hypoxic pulmonary hypertension in rats by
inhibiting the proliferation of pulmonary artery smooth muscle
cells via TGF-β-smad3-associated pathway. Eur J Pharmacol. 820:1–7.
2018. View Article : Google Scholar : PubMed/NCBI
|
61
|
Upton PD, Davies RJ, Tajsic T and Morrell
NW: Transforming growth factor-β(1) represses bone morphogenetic
protein-mediated Smad signaling in pulmonary artery smooth muscle
cells via Smad3. Am J Respir Cell Mol Biol. 49:1135–1145. 2013.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Sheares KK, Jeffery TK, Long L and Morrell
NW: Differential effects of TGF-beta1 and BMP-4 on the hypoxic
induction of cyclooxygenase-2 in human pulmonary artery smooth
muscle cells. Am J Physiol Lung Cell Mol Physiol. 287:L919–L927.
2004. View Article : Google Scholar : PubMed/NCBI
|
63
|
Ren X, Shi Y, Zhao D, Xu M, Li X, Dang Y
and Ye X: Naringin protects ultraviolet B-induced skin damage by
regulating p38MAPK signal pathway. J Dermatol Sci. 82:106–114.
2016. View Article : Google Scholar : PubMed/NCBI
|
64
|
Chen X, Xiu M, Xing J, Yu S, Min D and Guo
F: Lanthanum chloride inhibits LPS mediated expressions of
pro-inflammatory cytokines and adhesion molecules in HUVECs:
Involvement of NF-κB-Jmjd3 signaling. Cell Physiol Biochem.
42:1713–1724. 2017. View Article : Google Scholar : PubMed/NCBI
|
65
|
Ge J, Zhang Y and Zhang ZZ: Research
progress on CREB and the signal transduction by phosphorylation of
CREB at serine 133. Cell. 59:675–680. 2009.
|
66
|
Gonzallez GA and Montminy MR: Cyclic AMPs
timulatessomatostat in gene transcription by phosphorylation of
CREB at serine 133. Cell. 59:675–680. 2009. View Article : Google Scholar
|