HIF‑1α in myocardial ischemia‑reperfusion injury (Review)
- Authors:
- Jie Zheng
- Peier Chen
- Jianfeng Zhong
- Yu Cheng
- Hao Chen
- Yuan He
- Can Chen
-
Affiliations: Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China, Guangdong Key Laboratory of Age‑related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524003, P.R. China - Published online on: March 12, 2021 https://doi.org/10.3892/mmr.2021.11991
- Article Number: 352
-
Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kaski JC, Crea F, Gersh BJ and Camici PG: Reappraisal of ischemic heart disease. Circulation. 138:1463–1480. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma LY, Chen WW, Gao RL, Liu LS, Zhu ML, Wang YJ, Wu ZS, Li HJ, Gu DF, Yang YJ, et al: China cardiovascular diseases report 2018: An updated summary. J Geriatr Cardiol. 17:1–8. 2020.PubMed/NCBI | |
Zhao D, Liu J, Wang M, Zhang X and Zhou M: Epidemiology of cardiovascular disease in China: Current features and implications. Nat Rev Cardiol. 16:203–212. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patel MR, Calhoon JH, Dehmer GJ, Grantham JA, Maddox TM, Maron DJ and Smith PK: ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart disease: A report of the American college of cardiology appropriate use criteria task force, American association for thoracic surgery, American heart association, American society of echocardiography, American society of nuclear cardiology, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and society of thoracic surgeons. J Am Coll Cardiol. 69:2212–2241. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ibáñez B, Heusch G, Ovize M and Van de Werf F: Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bellanti F: Hypoxia-inducible factor-1 in myocardial ischaemia/reperfusion injury. Acta Physiol (Oxf). 221:93–94. 2017. View Article : Google Scholar : PubMed/NCBI | |
Choudhry H and Harris AL: Advances in hypoxia-inducible factor biology. Cell Metab. 27:281–298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL, Nejfelt MK, Chi SM and Antonarakis SE: Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA. 88:5680–5684. 1991. View Article : Google Scholar : PubMed/NCBI | |
Chee NT, Lohse I and Brothers SP: mRNA-to-protein translation in hypoxia. Mol Cancer. 18:49. 2019. View Article : Google Scholar : PubMed/NCBI | |
Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
Majmundar AJ, Wong WJ and Simon MC: Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 40:294–309. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eckle T, Köhler D, Lehmann R, El Kasmi K and Eltzschig HK: Hypoxia-inducible factor-1 is central to cardioprotection: A new paradigm for ischemic preconditioning. Circulation. 118:166–175. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang BH, Rue E, Wang GL, Roe R and Semenza GL: Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 271:17771–17778. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wang GL and Semenza GL: Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 270:1230–1237. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sousa Fialho MDL, Abd Jamil AH, Stannard GA and Heather LC: Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis. 1865:831–843. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ong SG and Hausenloy DJ: Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther. 136:69–81. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J and Ratcliffe PJ: Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 284:16767–16775. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI | |
Singh L, Aldosary S, Saeedan AS, Ansari MN and Kaithwas G: Prolyl hydroxylase 2: A promising target to inhibit hypoxia-induced cellular metabolism in cancer cells. Drug Discov Today. 23:1873–1882. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abe H, Semba H and Takeda N: The roles of hypoxia signaling in the pathogenesis of cardiovascular diseases. J Atheroscler Thromb. 24:884–894. 2017. View Article : Google Scholar : PubMed/NCBI | |
Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, Fong GH, Tian R and Sadoshima J: Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res. 112:1135–1149. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou YH, Han QF, Wang LH, Liu T, Meng XY, Wu L, Li T, Jiao YR, Yao HC and Zhang DY: High mobility group box 1 protein attenuates myocardial ischemia reperfusion injury via inhibition of the p38 mitogen-activated protein kinase signaling pathway. Exp Ther Med. 14:1582–1588. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu N, Li J, Li Y, Zhang Y, Du Q, Hao P, Li J, Cao X and Li L: Berberine protects against simulated ischemia/reperfusion injury-induced H9C2 cardiomyocytes apoptosis in vitro and myocardial ischemia/reperfusion-induced apoptosis in vivo by regulating the mitophagy-mediated HIF-1α/BNIP3 pathway. Front Pharmacol. 11:3672020. View Article : Google Scholar : PubMed/NCBI | |
Lesnefsky EJ, Chen Q, Tandler B and Hoppel CL: Mitochondrial dysfunction and myocardial ischemia-reperfusion: Implications for novel therapies. Annu Rev Pharmacol Toxicol. 57:535–565. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, et al: Novel targets and future strategies for acute cardioprotection: Position paper of the european society of cardiology working group on cellular biology of the heart. Cardiovasc Res. 113:564–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bernardi P and Di Lisa F: The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 78:100–106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jang S, Lewis TS, Powers C, Khuchua Z, Baines CP, Wipf P and Javadov S: Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxid Redox Signal. 27:57–69. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury A, Aich A, Jain G, Wozny K, Lüchtenborg C, Hartmann M, Bernhard O, Balleiniger M, Alfar EA, Zieseniss A, et al: Defective mitochondrial cardiolipin remodeling dampens HIF-1α expression in hypoxia. Cell Rep. 25:561–570. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nanayakkara G, Alasmari A, Mouli S, Eldoumani H, Quindry J, McGinnis G, Fu X, Berlin A, Peters B, Zhong J and Amin R: Cardioprotective HIF-1α-frataxin signaling against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 309:H867–H879. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fuhrmann DC and Brüne B: Mitochondrial composition and function under the control of hypoxia. Redox Biol. 12:208–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cadenas S: ROS and redox signaling in myocardial isch-emia-reperfusion injury and cardioprotection. Free Radic Biol Med. 117:76–89. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deshwal S, Antonucci S, Kaludercic N and Di Lisa F: Measurement of mitochondrial ROS formation. Methods Mol Biol. 1782:403–418. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garlick PB, Davies MJ, Hearse DJ and Slater TF: Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res. 61:757–760. 1987. View Article : Google Scholar : PubMed/NCBI | |
Boengler K, Bornbaum J, Schlüter KD and Schulz R: P66shc and its role in ischemic cardiovascular diseases. Basic Res Cardiol. 114:292019. View Article : Google Scholar : PubMed/NCBI | |
Boengler K, Lochnit G and Schulz R: Mitochondria ‘THE’ target of myocardial conditioning. Am J Physiol Heart Circ Physiol. 315:H1215–H1231. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Luo Y, Wang S, Zhu H and Li D: Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol. 134:154–164. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kurian GA, Rajagopal R, Vedantham S and Rajesh M: The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: Revisited. Oxid Med Cell Longev. 2016:16564502016. View Article : Google Scholar : PubMed/NCBI | |
Bertero E and Maack C: Calcium signaling and reactive oxygen species in mitochondria. Circ Res. 122:1460–1478. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cadenas S: ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 117:76–89. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Zeng H, Ni L, Qi L, Xu Y, Xia L, Yu Y, Liu B, Yang H, Hao H and Li P: HIF-1α preconditioning potentiates antioxidant activity in ischemic injury: The role of sequential administration of dihydrotanshinone I and protocatechuic aldehyde in cardioprotection. Antioxid Redox Signal. 31:227–242. 2019. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Hypoxia-inducible factors: Coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 36:252–259. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thomas LW and Ashcroft M: Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 76:1759–1777. 2019. View Article : Google Scholar : PubMed/NCBI | |
Adeyemi OS, Eseola AO, Plass W, Otuechere CA and Elebiyo TC: New imidazoles cause cellular toxicity by impairing redox balance, mitochondrial membrane potential, and modulation of HIF-1α expression. Biochem Biophys Res Commun. 529:23–27. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gyongyosi A, Terraneo L, Bianciardi P, Tosaki A, Lekli I and Samaja M: The impact of moderate chronic hypoxia and hyperoxia on the level of apoptotic and autophagic proteins in myocardial tissue. Oxid Med Cell Longev. 2018:57867422018. View Article : Google Scholar : PubMed/NCBI | |
Watanabe Y, Cohen RA and Matsui R: Redox regulation of ischemic angiogenesis-another aspect of reactive oxygen species. Circ J. 80:1278–1284. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang WH, Wu S, Wong TM, Chung SK and Chung SS: Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radic Biol Med. 45:602–610. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Ma K, Liu Y, Pan X, Chen Q, Qi L and Li S: Stabilization of hypoxia-inducible factor by DMOG inhibits development of chronic hypoxia-induced right ventricular remodeling. J Cardiovasc Pharmacol. 67:68–75. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Ko J, Ju C and Eltzschig HK: Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 51:1–13. 2019. View Article : Google Scholar | |
Dong J, Xu M, Zhang W and Che X: Effects of sevoflurane pretreatment on myocardial ischemia-reperfusion injury through the Akt/hypoxia-inducible factor 1-alpha (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway. Med Sci Monit. 25:3100–3107. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhou W, Chen W, Wang H, Zhang Y and Yu T: Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post-conditioning. Mol Med Rep. 21:1527–1536. 2020.PubMed/NCBI | |
Wu N, Zhang X, Du S, Chen D and Che R: Upregulation of miR-335 ameliorates myocardial ischemia reperfusion injury via targeting hypoxia-inducible factor 1-alpha subunit inhibitor. Am J Transl Res. 10:4082–4094. 2018.PubMed/NCBI | |
Si J, Wang N, Wang H, Xie J, Yang J, Yi H, Shi Z, Ma J, Wang W, Yang L, et al: HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury. PLoS One. 9:e1078322014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu D, Hu H, Zhang P, Xie R and Cui W: HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother. 120:1094642019. View Article : Google Scholar : PubMed/NCBI | |
Liu DW, Zhang YN, Hu HJ, Zhang PQ and Cui W: Downregulation of microRNA-199a-5p attenuates hypoxia/reoxygenation-induced cytotoxicity in cardiomyocytes by targeting the HIF-1α-GSK3β-mPTP axis. Mol Med Rep. 19:5335–5344. 2019.PubMed/NCBI | |
Adluri RS, Thirunavukkarasu M, Dunna NR, Zhan L, Oriowo B, Takeda K, Sanchez JA, Otani H, Maulik G, Fong GH and Maulik N: Disruption of hypoxia-inducible transcription factor-prolyl hydroxylase domain-1 (PHD-1−/−) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor-1α transcription factor and its target genes in mice. Antioxid Redox Signal. 15:1789–1797. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yao HC, Zhou M, Zhou YH, Wang LH, Zhang DY, Han QF, Liu T, Wu L, Tian KL and Zhang M: Intravenous high mobility group box 1 upregulates the expression of HIF-1α in the myocardium via a protein kinase B-dependent pathway in rats following acute myocardial ischemia. Mol Med Rep. 13:1211–1219. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tekin D, Dursun AD and Xi L: Hypoxia-inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. 31:1085–1094. 2010. View Article : Google Scholar : PubMed/NCBI | |
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C and Foti M: Deciphering miRNAs' action through miRNA editing. Int J Mol Sci. 20:62492019. View Article : Google Scholar | |
Sheng Z, Lu W, Zuo Z, Wang D, Zuo P, Yao Y and Ma G: MicroRNA-7b attenuates ischemia/reperfusion-induced H9C2 cardiomyocyte apoptosis via the hypoxia-inducible factor-1/p-p38 pathway. J Cell Biochem. 120:9947–9955. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zou J, Liu X and Zhang Q: MicroRNA-138 attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis by targeting HIF1-α. Exp Ther Med. 18:3325–3332. 2019.PubMed/NCBI | |
Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF and Bartoszewski R: miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target. Angiogenesis. 21:183–202. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Chen Y, Chen Y, Yang W, Han Y, Lu L, Yang K and Cao J: Effect of HIF-1α/miR-10b-5p/PTEN on hypoxia-induced cardiomyocyte apoptosis. J Am Heart Assoc. 8:e0119482019. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Hu M, Chen Z, Xiang F, Chen G, Yan W, Peng Q and Chen X: Asiatic acid enhances survival of human AC16 cardiomyocytes under hypoxia by upregulating miR-1290. IUBMB Life. 69:660–667. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bavelloni A, Ramazzotti G, Poli A, Piazzi M, Focaccia E, Blalock W and Faenza I: MiRNA-210: A current overview. Anticancer Res. 37:6511–6521. 2017.PubMed/NCBI | |
Long B, Li N, Xu XX, Li XX, Xu XJ, Guo D, Zhang D, Wu ZH and Zhang SY: Long noncoding RNA FTX regulates cardiomyocyte apoptosis by targeting miR-29b-1-5p and Bcl2l2. Biochem Biophys Res Commun. 495:312–318. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kopp F and Mendell JT: Functional classification and experimental dissection of long noncoding RNAs. Cell. 172:393–407. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang X and Ning Q: The emerging roles of long noncoding RNAs in common cardiovascular diseases. Hypertens Res. 38:375–379. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ong SB, Katwadi K, Kwek XY, Ismail NI, Chinda K, Ong SG and Hausenloy DJ: Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin Ther Targets. 22:247–261. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ren L, Chen S, Liu W, Hou P, Sun W and Yan H: Downregulation of long non-coding RNA nuclear enriched abundant transcript 1 promotes cell proliferation and inhibits cell apoptosis by targeting miR-193a in myocardial ischemia/reperfusion injury. BMC Cardiovasc Disord. 19:1922019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Luo S, Zhang J, Yuan Y, Jiang W, Zhu H, Ding X, Zhan L, Wu H, Xie Y, et al: lncRNA H19 alleviated myocardial I/RI via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol Ther Nucleic Acids. 17:297–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Zhang H, Mei Y and Wu M: Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell. 53:88–100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yue X, Wang R, Li W, Wang C, Lu H and Zhang J: Research progress of long chain non-coding RNA H19 in anoxic environment mechanism. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 43:1151–1158. 2018.(In Chinese). PubMed/NCBI | |
Xue X and Luo L: LncRNA HIF1A-AS1 contributes to ventricular remodeling after myocardial ischemia/reperfusion injury by adsorption of microRNA-204 to regulating SOCS2 expression. Cell Cycle. 18:2465–2480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu XW, Lu MK, Zhong HT, Wang LH and Fu YP: Panax notoginseng saponins attenuate myocardial ischemia-reperfusion injury through the HIF-1α/BNIP3 pathway of autophagy. J Cardiovasc Pharmacol. 73:92–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shen K, Ji L, Gong C, Ma Y, Yang L, Fan Y, Hou M and Wang Z: Notoginsenoside Ft1 promotes angiogenesis via HIF-1α mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochem Pharmacol. 84:784–792. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Zuo L, Lv Y, Chen C, Yang Y, Xin H, Li Y and Qian Y: Asiatic acid attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β/HIF-1α signaling in rat H9c2 cardiomyocytes. Molecules. 21:12482016. View Article : Google Scholar | |
Veloso CD, Belew GD, Ferreira LL, Grilo LF, Jones JG, Portincasa P, Sardão VA and Oliveira PJ: A mitochondrial approach to cardiovascular risk and disease. Curr Pharm Des. 25:3175–3194. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Zheng M, Jiao YB and Zheng H: Paclitaxel enhances the protective effect of myocardial ischemia preconditioning on ischemia/reperfusion injury in aged rat. Zhonghua Xin Xue Guan Bing Za Zhi. 46:719–724. 2018.(In Chinese). PubMed/NCBI | |
Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA and Semenza GL: Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res. 77:463–470. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jia P, Wu X, Dai Y, Teng J, Fang Y, Hu J, Zou J, Liang M and Ding X: MicroRNA-21 is required for local and remote ischemic preconditioning in multiple organ protection against sepsis. Crit Care Med. 45:e703–e710. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Ge L, Niu L, Lian X, Ma H and Pang L: The dual role of inducible nitric oxide synthase in myocardial ischemia/reperfusion injury: Friend or foe? Oxid Med Cell Longev. 2018:83648482018. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Luo W, Zhan H and Semenza GL: Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc Natl Acad Sci USA. 110:17462–17467. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Jing XY, Shen YJ, Wang TL, Ou C, Lu SF, Cai Y, Li Q, Chen X, Ding YJ, et al: Stat5-dependent cardioprotection in late remote ischaemia preconditioning. Cardiovasc Res. 114:679–689. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wan DY, Zhang Z and Yang HH: Cardioprotective effect of miR-214 in myocardial ischemic postconditioning by down-regulation of hypoxia-inducible factor 1, alpha subunit inhibitor. Cell Mol Biol (Noisy-le-grand). 61:1–6. 2015.PubMed/NCBI | |
Wang C, Zuo B and Wu X: The role of macrophage migration inhibitory factor in remote ischemic postconditioning. Can J Cardiol. 35:501–510. 2019. View Article : Google Scholar : PubMed/NCBI | |
Davidson SM, Ferdinandy P, Andreadou I, Bøtker HE, Heusch G, Ibáñez B, Ovize M, Schulz R, Yellon DM, Hausenloy DJ, et al: Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol. 73:89–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li D, Ni H, Rui Q, Gao R and Chen G: Mst1: Function and mechanism in brain and myocardial ischemia reperfusion injury. Curr Neuropharmacol. 16:1358–1364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Shao X, Li X, Su X, Huo Y and Yang C: HIF-1α may provide only short-term protection against ischemia-reperfusion injury in Sprague-Dawley myocardial cultures. Mol Clin Oncol. 4:579–583. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Hu Q, Yan J, Yang X, Shi X, Lei J, Chen L, Huang H, Han J, Zhang JH and Zhou C: Early inhibition of HIF-1alpha with small interfering RNA reduces ischemic-reperfused brain injury in rats. Neurobiol Dis. 33:509–517. 2009. View Article : Google Scholar : PubMed/NCBI |