1
|
Zucchi D, Elefante E, Calabresi E,
Signorini V, Bortoluzzi A and Tani C: One year in review 2019:
Systemic lupus erythematosus. Clin Exp Rheumatol. 37:715–722.
2019.PubMed/NCBI
|
2
|
Tsang-A-Sjoe M and Bultink IE: Systemic
lupus erythematosus: Review of synthetic drugs. Expert Opin
Pharmacother. 16:2793–2806. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Aringer M: Inflammatory markers in
systemic lupus erythematosus. J Autoimmun. 110:1023742020.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Uzrail AH, Assaf AM and Abdalla SS:
Correlations of expression levels of a panel of genes (IRF5, STAT4,
TNFSF4, MECP2 and TLR7) and cytokine levels (IL-2, IL-6, IL-10,
IL-12, IFN-γ and TNF-α) with systemic lupus erythematosus outcomes
in Jordanian patients. Biomed Res Int. 2019:17038422019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Di Battista M, Marcucci E, Elefante E,
Tripoli A, Governato G, Zucchi D, Tani C and Alunno A: One year in
review 2018: Systemic lupus erythematosus. Clin Exp Rheumatol.
36:763–777. 2018.PubMed/NCBI
|
6
|
Ali M, Firoz CK, Jabir NR, Rehan M, Khan
MS and Tabrez S: An insight on the pathogenesis and treatment of
systemic lupus erythematosus. Endocr Metab Immune Disord Drug
Targets. 18:110–123. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Katsuyama E, Yan M, Watanabe KS, Narazaki
M, Matsushima S, Yamamura Y, Hiramatsu S, Ohashi K, Watanabe H,
Katsuyama T, et al: Downregulation of miR-200a-3p, targeting CtBP2
complex, is involved in the hypoproduction of IL-2 in systemic
lupus erythematosus-derived T cells. J Immunol. 198:4268–4276.
2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zheng B, Zhang P, Yuan L, Chhetri RK, Guo
Y and Deng D: Effects of human umbilical cord mesenchymal stem
cells on inflammatory factors and miR-181a in T lymphocytes from
patients with systemic lupus erythematosus. Lupus. 29:126–135.
2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cao W, Qian G, Luo W, Liu X, Pu Y, Hu G,
Han L, Yuan L, A X and Deng D: miR-125b is downregulated in
systemic lupus erythematosus patients and inhibits autophagy by
targeting UVRAG. Biomed Pharmacother. 99:791–797. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu D, Zhang N, Zhang X, Qin M, Dong Y and
Jin L: MiR-410 down-regulates the expression of interleukin-10 by
targeting STAT3 in the pathogenesis of systemic lupus
erythematosus. Cell Physiol Biochem. 39:303–315. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ren D, Liu F, Dong G, You M, Ji J, Huang
Y, Hou Y and Fan H: Activation of TLR7 increases CCND3 expression
via the downregulation of miR-15b in B cells of systemic lupus
erythematosus. Cell Mol Immunol. 13:764–775. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen S, Wang Y, Qin H, Lin J, Xie L, Chen
S, Liang J and Xu J: Downregulation of miR-633 activated AKT/mTOR
pathway by targeting AKT1 in lupus CD4+ T cells. Lupus.
28:510–519. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rasmussen TK, Andersen T, Bak RO, Yiu G,
Sørensen CM, Stengaard-Pedersen K, Mikkelsen JG, Utz PJ, Holm CK
and Deleuran B: Overexpression of microRNA-155 increases IL-21
mediated STAT3 signaling and IL-21 production in systemic lupus
erythematosus. Arthritis Res Ther. 17:1542015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Y, Dong J, Mu R, Gao Y, Tan X, Li Y,
Li Z and Yang G: MicroRNA-30a promotes B cell hyperactivity in
patients with systemic lupus erythematosus by direct interaction
with Lyn. Arthritis Rheum. 65:1603–1611. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wei Q, Lv F, Zhang H, Wang X, Geng Q,
Zhang X, Li T, Wang S, Wang Y and Cui Y: MicroRNA-101-3p inhibits
fibroblast-like synoviocyte proliferation and inflammation in
rheumatoid arthritis by targeting PTGS2. Biosci Rep.
40:BSR201911362020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun H, Guo F and Xu L: Downregulation of
microRNA-101-3p participates in systemic lupus erythematosus
progression via negatively regulating HDAC9. J Cell Biochem.
121:4310–4320. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gang C, Jiahui Y, Huaizhou W, Qing C,
Dongbao Z and Qian S: Defects of mitogen-activated protein kinase
in ICOS signaling pathway lead to CD4(+) and CD8(+) T-cell
dysfunction in patients with active SLE. Cell Immunol. 258:83–89.
2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu Y, Deng W, Meng Q, Qiu X, Sun D and
Dai C: CD8+iTregs attenuate glomerular endothelial cell injury in
lupus-prone mice through blocking the activation of p38 MAPK and
NF-κB. Mol Immunol. 103:133–143. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang J, Lu YW, Lu MM, Leng RX, Pan HF and
Ye DQ: MicroRNA-101, mitogen-activated protein kinases and
mitogen-activated protein kinases phosphatase-1 in systemic lupus
erythematosus. Lupus. 22:115–120. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hellweg CE: The nuclear factor κB pathway:
A link to the immune system in the radiation response. Cancer Lett.
368:275–289. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cao HY, Li D, Wang YP, Lu HX, Sun J and Li
HB: The protection of NF-κB inhibition on kidney injury of systemic
lupus erythematosus mice may be correlated with lncRNA TUG1.
Kaohsiung J Med Sci. 36:354–362. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu J, Huang X, Hao S, Wang Y, Liu M, Xu
J, Zhang X, Yu T, Gan S, Dai D, et al: Peli1 negatively regulates
noncanonical NF-κB signaling to restrain systemic lupus
erythematosus. Nat Commun. 9:11362018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ji L, Hou X, Liu W, Deng X, Jiang Z, Huang
K and Li R: Paeoniflorin inhibits activation of the IRAK1-NF-κB
signaling pathway in peritoneal macrophages from lupus-prone
MRL/lpr mice. Microb Pathog. 124:223–229. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou C, Zhao L, Wang K, Qi Q, Wang M, Yang
L, Sun P and Mu H: MicroRNA-146a inhibits NF-κB activation and
pro-inflammatory cytokine production by regulating IRAK1 expression
in THP-1 cells. Exp Ther Med. 18:3078–3084. 2019.PubMed/NCBI
|
25
|
Zhang W, Yu T, Cui X, Yu H and Li X:
Analgesic effect of dexmedetomidine in rats after chronic
constriction injury by mediating microRNA-101 expression and the
E2F2-TLR4-NF-κB axis. Exp Physiol. 105:1588–1597. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hochberg MC: Updating the American college
of rheumatology revised criteria for the classification of systemic
lupus erythematosus. Arthritis Rheum. 40:17251997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bombardier C, Gladman DD, Urowitz MB,
Caron D and Chang CH: Derivation of the SLEDAI. A disease activity
index for lupus patients. The committee on prognosis studies in
SLE. Arthritis Rheum. 35:630–640. 1992. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Fava A and Petri M: Systemic lupus
erythematosus: Diagnosis and clinical management. J Autoimmun.
96:1–13. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xie L and Xu J: Role of MiR-98 and its
underlying mechanisms in systemic lupus erythematosus. J Rheumatol.
45:1397–1405. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang
Y, Qiu X, Tan Y, Dai Y, Yung S, et al: The role of microRNA-1246 in
the regulation of B cell activation and the pathogenesis of
systemic lupus erythematosus. Clin Epigenetics. 7:242015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Sarhan RA, Aboelenein HR, Sourour SK,
Fawzy IO, Salah S and Abdelaziz AI: Targeting E2F1 and c-Myc
expression by microRNA-17-5p represses interferon-stimulated gene
MxA in peripheral blood mononuclear cells of pediatric systemic
lupus erythematosus patients. Discov Med. 19:419–425.
2015.PubMed/NCBI
|
33
|
Motawi TK, Mohsen DA, El-Maraghy SA and
Kortam MA: MicroRNA-21, microRNA-181a and microRNA-196a as
potential biomarkers in adult Egyptian patients with systemic lupus
erythematosus. Chem Biol Interact. 260:110–116. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Clancy R, El Bannoudi H, Rasmussen SE,
Bornkamp N, Allen N, Dann R, Reynolds H, Buyon JP and Berger JS:
Human low-affinity IgG receptor FcγRIIA polymorphism H131R
associates with subclinical atherosclerosis and increased platelet
activity in systemic lupus erythematosus. J Thromb Haemost.
17:532–537. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yuan W, Cao H, Wan P, Shi R, Zhou S and
Zheng J: Clinical evaluation of total and high-avidity anti-dsDNA
antibody assays for the diagnosis of systemic lupus erythematosus.
Lupus. 28:1387–1396. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun J, Li X, Zhou H, Liu X, Jia J, Xie Q,
Peng S, Sun X, Wang Q and Yi L: Anti-GAPDH autoantibody is
associated with increased disease activity and intracranial
pressure in systemic lupus erythematosus. J Immunol Res.
2019:74307802019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yuan S, Tang C, Chen D, Li F, Huang M, Ye
J, He Z, Li W, Chen Y, Lin X, et al: miR-98 modulates cytokine
production from human PBMCs in systemic lupus erythematosus by
targeting IL-6 mRNA. J Immunol Res. 2019:98275742019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li HS, Ning Y, Li SB, Shao PY, Chen SJ, Ye
Q and Heng X: Expression and clinical significance of miR-181a and
miR-203 in systemic lupus erythematosus patients. Eur Rev Med
Pharmacol Sci. 21:4790–4796. 2017.PubMed/NCBI
|
39
|
Lin LJ, Mai LJ, Chen G, Zhao EN, Xue M and
Su XD: Expression and diagnostic value of plasma miR-145 and
miR-183 in children with lupus nephritis. Zhongguo Dang Dai Er Ke
Za Zhi. 22:632–637. 2020.(In Chinese). PubMed/NCBI
|
40
|
Yao Y, Wang JB, Xin MM, Li H, Liu B, Wang
LL, Wang LQ and Zhao L: Balance between inflammatory and regulatory
cytokines in systemic lupus erythematosus. Genet Mol Res. 15:1–8.
2016. View Article : Google Scholar
|
41
|
Godsell J, Rudloff I, Kandane-Rathnayake
R, Hoi A, Nold MF, Morand EF and Harris J: Clinical associations of
IL-10 and IL-37 in systemic lupus erythematosus. Sci Rep.
6:346042016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yuan Y, Wang X, Ren L, Kong Y, Bai J and
Yan Y: Associations between interleukin-10 gene polymorphisms and
systemic lupus erythematosus risk: A meta-analysis with trial
sequential analysis. Clin Exp Rheumatol. 37:242–253.
2019.PubMed/NCBI
|
43
|
Liu M, Liu J, Hao S, Wu P, Zhang X, Xiao
Y, Jiang G and Huang X: Higher activation of the interferon-gamma
signaling pathway in systemic lupus erythematosus patients with a
high type I IFN score: Relation to disease activity. Clin
Rheumatol. 37:2675–2684. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kokic V, Martinovic Kaliterna D, Radic M,
Perkovic D, Cvek M and Capkun V: Relationship between vitamin D,
IFN-γ, and E2 levels in systemic lupus erythematosus. Lupus.
25:282–288. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jiao Q, Qian Q, Zhao Z, Fang F, Hu X, An
J, Wu J and Liu C: Expression of human T cell immunoglobulin domain
and mucin-3 (TIM-3) and TIM-3 ligands in peripheral blood from
patients with systemic lupus erythematosus. Arch Dermatol Res.
308:553–561. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Dahal LN, Basu N, Youssef H, Khanolkar RC,
Barker RN, Erwig LP and Ward FJ: Immunoregulatory soluble CTLA-4
modifies effector T-cell responses in systemic lupus erythematosus.
Arthritis Res Ther. 18:1802016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bashanfer SAA, Saleem M, Heidenreich O,
Moses EJ and Yusoff NM: Disruption of MAPK1 expression in the ERK
signalling pathway and the RUNX1-RUNX1T1 fusion gene attenuate the
differentiation and proliferation and induces the growth arrest in
t(8;21) leukaemia cells. Oncol Rep. 41:2027–2040. 2019.PubMed/NCBI
|
48
|
Zhu Y, Yang T, Duan J, Mu N and Zhang T:
MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells
autophagy and affects coronary atherosclerotic heart disease via
mTOR signaling pathway. Aging (Albany NY). 11:1089–1109. 2019.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Aparicio-Soto M, Sánchez-Hidalgo M,
Cárdeno A, Rosillo MÁ, Sánchez-Fidalgo S, Utrilla J, Martín-Lacave
I and Alarcón-de-la-Lastra C: Dietary extra virgin olive oil
attenuates kidney injury in pristane-induced SLE model via
activation of HO-1/Nrf-2 antioxidant pathway and suppression of
JAK/STAT, NF-κB and MAPK activation. J Nutr Biochem. 27:278–288.
2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cheng Z, Qiu S, Jiang L, Zhang A, Bao W,
Liu P and Liu J: MiR-320a is downregulated in patients with
myasthenia gravis and modulates inflammatory cytokines production
by targeting mitogen-activated protein kinase 1. J Clin Immunol.
33:567–576. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhu S, Song W, Sun Y, Zhou Y and Kong F:
MiR-342 attenuates lipopolysaccharide-induced acute lung injury via
inhibiting MAPK1 expression. Clin Exp Pharmacol Physiol.
47:1448–1454. 2020. View Article : Google Scholar : PubMed/NCBI
|
52
|
Chen W, Bian H, Xie X, Yang X, Bi B, Li C,
Zhang Y, Zhu Q, Song J, Qin C and Qi J: Negative feedback loop of
ERK/CREB/miR-212-3p inhibits HBeAg-induced macrophage activation. J
Cell Mol Med. 24:10935–10945. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Shalini V, Pushpan CK, G S, A J and A H:
Tricin, flavonoid from Njavara reduces inflammatory responses in
hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents
inflammation associated endothelial dysfunction in HUVECs.
Immunobiology. 221:137–144. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Matsuzawa T, Fujiwara E and Washi Y:
Autophagy activation by interferon-γ via the p38 mitogen-activated
protein kinase signalling pathway is involved in macrophage
bactericidal activity. Immunology. 141:61–69. 2013. View Article : Google Scholar
|
55
|
Garcia-Rodriguez S, Callejas-Rubio JL,
Ortego-Centeno N, Zumaquero E, Ríos-Fernandez R, Arias-Santiago S,
Navarro P, Sancho J and Zubiaur M: Altered AKT1 and MAPK1 gene
expression on peripheral blood mononuclear cells and correlation
with T-helper-transcription factors in systemic lupus erythematosus
patients. Mediators Inflamm. 2012:4959342012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Shi X, Qian T, Li M, Chen F, Chen Y and
Hao F: Aberrant low expression of A20 in tumor necrosis
factor-α-stimulated SLE monocytes mediates sustained NF-κB
inflammatory response. Immunol Invest. 44:497–508. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Kong X, Zhang Z, Fu T, Ji J, Yang J and Gu
Z: TNF-α regulates microglial activation via the NF-κB signaling
pathway in systemic lupus erythematosus with depression. Int J Biol
Macromol. 125:892–900. 2019. View Article : Google Scholar : PubMed/NCBI
|
58
|
Sun SC: The non-canonical NF-κB pathway in
immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Chai Z, Yin X, Chen J, Shi J, Sun J, Liu
C, Liu F and Cheng S: MicroRNA-101 modulates cisplatin
chemoresistance in liver cancer cells via the DNA-PKcs signaling
pathway. Oncol Lett. 18:3655–3663. 2019.PubMed/NCBI
|
60
|
Liu JC, Xue DF, Wang XQ, Ai DB and Qin PJ:
MiR-101 relates to chronic peripheral neuropathic pain through
targeting KPNB1 and regulating NF-κB signaling. Kaohsiung J Med
Sci. 35:139–145. 2019. View Article : Google Scholar : PubMed/NCBI
|
61
|
Hu Q, Yang C, Wang Q, Zeng H and Qin W:
Demethylzeylasteral (T-96) treatment ameliorates mice lupus
nephritis accompanied by inhibiting activation of NF-κB pathway.
PLoS One. 10:e01337242015. View Article : Google Scholar : PubMed/NCBI
|
62
|
Fu HX, Fan XP, Li M, Liu MJ and Sun QL:
MiR-146a relieves kidney injury in mice with systemic lupus
erythematosus through regulating NF-κB pathway. Eur Rev Med
Pharmacol Sci. 23:7024–7032. 2019.PubMed/NCBI
|