1
|
Siegel RL, Miller KD, Goding Sauer A,
Fedewa SA, Butterly LF, Cercek A, Smith RA and Jemal A: Colorectal
cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Takayama T, Miyanishi K, Hayashi T, Sato Y
and Niitsu Y: Colorectal cancer: Genetics of development and
metastasis. J Gastroenterol. 41:185–192. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
De Angelis R, Sant M, Coleman MP,
Francisci S, Baili P, Pierannunzio D, Trama A, Visser O, Brenner H,
Ardanaz E, et al: Cancer survival in Europe 1999–2007 by country
and age: Results of EUROCARE-5 - a population-based study. Lancet
Oncol. 15:23–34. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Peng SL, Thomas M, Ruszkiewicz A, Hunter
A, Lawrence M and Moore J: Conventional adverse features do not
predict response to adjuvant chemotherapy in stage II colon cancer.
ANZ J Surg. 84:837–841. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Prados J, Melguizo C, Ortiz R, Perazzoli
G, Cabeza L, Alvarez PJ, Rodriguez-Serrano F and Aranega A: Colon
cancer therapy: Recent developments in nanomedicine to improve the
efficacy of conventional chemotherapeutic drugs. Anticancer Agents
Med Chem. 13:1204–1216. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kaushik S and Cuervo AM:
Chaperone-mediated autophagy: A unique way to enter the lysosome
world. Trends Cell Biol. 22:407–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Catarino S, Pereira P and Girão H:
Molecular control of chaperone-mediated autophagy. Essays Biochem.
61:663–674. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kaushik S and Cuervo AM: The coming of age
of chaperone- mediated autophagy. Nat Rev Mol Cell Biol.
19:365–381. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Saha T: LAMP2A overexpression in breast
tumors promotes cancer cell survival via chaperone-mediated
autophagy. Autophagy. 8:1643–1656. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Y, Xu YY, Yao CB, Li JT, Zhao XN,
Yang HB, Zhang M, Yin M, Chen J and Lei QY: Acetylation targets
HSD17B4 for degradation via the CMA pathway in response to estrone.
Autophagy. 13:538–553. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Du C, Huang D, Peng Y, Yao Y, Zhao Y, Yang
Y, Wang H, Cao L, Zhu WG and Gu J: 5-Fluorouracil targets histone
acetyltransferases p300/CBP in the treatment of colorectal cancer.
Cancer Lett. 400:183–193. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou J, Yang J, Fan X, Hu S, Zhou F, Dong
J, Zhang S, Shang Y, Jiang X, Guo H, et al: Chaperone-mediated
autophagy regulates proliferation by targeting RND3 in gastric
cancer. Autophagy. 12:515–528. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ding ZB, Fu XT, Shi YH, Zhou J, Peng YF,
Liu WR, Shi GM, Gao Q, Wang XY, Song K, et al: Lamp2a is required
for tumor growth and promotes tumor recurrence of hepatocellular
carcinoma. Int J Oncol. 49:2367–2376. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dubois A, Furstoss N, Calleja A, erhouni
M, Cluzeau T, Savy C, Marchetti S, Hamouda MA, Boulakirba S, Orange
F, et al: LAMP2 expression dictates azacytidine response and
prognosis in MDS/AML. Leukemia. 33:1501–1513. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Selvy PE, Lavieri RR, Lindsley CW and
Brown HA: Phospholipase D: Enzymology, functionality and chemical
modulation. Chem Rev. 111:6064–6119. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Foster DA and Xu L: Phospholipase D in
cell proliferation and cancer. Mol Cancer Res. 1:789–800.
2003.PubMed/NCBI
|
17
|
Hammond SM, Altshuller YM, Sung TC, Rudge
SA, Rose K, Engebrecht J, Morris AJ and Frohman MA: Human ADP
ribosylation factor-activated phosphatidylcholine-specific
phospholipase D defines a new and highly conserved gene family. J
Biol Chem. 270:29640–29643. 1995. View Article : Google Scholar : PubMed/NCBI
|
18
|
Colley WC, Sung TC, Roll R, Jenco J,
Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ and Frohman MA:
Phospholipase D2, a distinct phospholipase D isoform with novel
regulatory properties that provokes cytoskeletal reorganization.
Curr Biol. 7:191–201. 1997. View Article : Google Scholar : PubMed/NCBI
|
19
|
Henkels KM, Boivin GP, Dudley ES,
Berberich SJ and Gomez-Cambronero J: Phospholipase D (PLD) drives
cell invasion, tumorgrowth and metastasis in a human breast cancer
xenograph model. Oncogene. 32:5551–5562. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Uchida N, Okamura S and Kuwano H:
Phospholipase D activity in human gastric carcinoma. Anticancer
Res. 19:671–675. 1999.PubMed/NCBI
|
21
|
Diaz-Aragon R, Ramirez-Ricardo J,
Cortes-Reynosa P, Simoni-Nieves A, Gomez-Quiroz LE and Perez
Salazar E: Role of phospholipase D in migration and invasion
induced by linoleic acid in breast cancer cells. Mol Cell Biochem.
457:119–132. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu M, Du K, Jiang B and Wu X: High
expression of phospholipaseD2 induced by hypoxia promotes
proliferation of colon cancer cells through activating NF-κ Bp65
signaling pathway. Pathol Oncol Res. 26:281–290. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fiucci G, Czarny M, Lavie Y, Zhao D, Berse
B, Blusztajn JK and Liscovitch M: Changes in phospholipaseD isoform
activity and expression in multidrug-resistant human cancer cells.
Int J Cancer. 85:882–888. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kuang YH, Chen X, Su J, Wu LS, Liao LQ, Li
D, Chen ZS and Kanekura T: RNA interference targeting the CD147
induces apoptosis of multi-drug resistant cancer cells related to
XIAP depletion. Cancer Lett. 276:189–195. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nakayama K, Kanzaki A, Ogawa K, Miyazaki
K, Neamati N and Takebayashi Y: Copper-transporting P-type
adenosine triphosphatase (ATP7B) as a cisplatin based
chemoresistance marker in ovarian carcinoma: Comparative analysis
with expression of MDR1, MRP1, MRP2, LRP and BCRP. Int J Cancer.
101:488–495. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ściskalska M and Milnerowicz H: The role
of GSTπ isoform in the cells signalling and anticancer therapy. Eur
Rev Med Pharmacol Sci. 24:8537–8550. 2020.PubMed/NCBI
|
28
|
He J, He J, Min L, He Y, Guan H, Wang J
and Peng X: Extracellular vesicles transmitted miR-31-5p promotes
sorafenib resistance by targeting MLH1 in renal cell carcinoma. Int
J Cancer. 146:1052–1063. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Germano G, Lamba S, Rospo G, Barault L,
Magrì A, Maione F, Russo M, Crisafulli G, Bartolini A, Lerda G, et
al: Inactivation of DNA repair triggers neoantigen generation and
impairs tumour growth. Nature. 552:116–120. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xiao G, Li Y, Wang M, Li X, Qin S, Sun X,
Liang R, Zhang B, Du N, Xu C, et al: FBXW7 suppresses
epithelial-mesenchymal transition and chemo-resistance of
non-small-cell lung cancer cells by targeting snai1 for
ubiquitin-dependent degradation. Prolif. 51:e124732018. View Article : Google Scholar
|
31
|
Rezasoltani S, Asadzadeh-Aghdaei H,
Nazemalhosseini-Mojarad E, Dabiri H, Ghanbari R and Zali MR: Gut
microbiota, epigenetic modification and colorectal cancer. Iran J
Microbiol. 9:55–63. 2017.PubMed/NCBI
|
32
|
Skarkova V, Kralova V, Vitovcova B and
Rudolf E: Selected aspects of chemoresistance mechanisms in
colorectal carcinoma-A focus on epithelial-to-mesenchymal
transition, autophagy, and apoptosis. Cells. 8:2342019. View Article : Google Scholar
|
33
|
Kon M, Kiffin R, Koga H, Chapochnick J,
Macian F, Varticovski L and Cuervo AM: Chaperone-mediated autophagy
is required for tumor growth. Sci Transl Med. 3:109ra1172011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Li L, Fang R, Liu B, Shi H, Wang Y, Zhang
W, Zhang X and Ye L: Deacetylation of tumor-suppressor MST1 in
Hippo pathway induces its degradation through HBXIP-elevated HDAC6
in promotion of breast cancer growth. Oncogene. 35:4048–4057. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Quintavalle C, Di Costanzo S, Zanca C,
Tasset I, Fraldi A, Incoronato M, Mirabelli P, Monti M, Ballabio A,
Pucci P, et al: Phosphorylation-regulated degradation of the
tumor-suppressor form of PED by chaperone-mediated autophagy in
lung cancer cells. J Cell. Physiol. 229:1359–1368. 2014.
|
36
|
Vakifahmetoglu-Norberg H, Kim M, Xia HG,
Iwanicki MP, Ofengeim D, Coloff JL, Pan L, Ince TA, Kroemer G,
Brugge JS and Yuan J: Chaperone-mediated autophagy degrades mutant
p53. Genes Dev. 27:1718–1730. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xie W, Zhang L, Jiao H, Guan L, Zha J, Li
X, Wu M, Wang Z, Han J and You H: Chaperone-mediated autophagy
prevents apoptosis by degrading BBC3/PUMA. Autophagy. 11:1623–1635.
2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Suzuki J, Nakajima W, Suzuki H, Asano Y
and Tanaka N: Chaperone-mediated autophagy promotes lung cancer
cell survival through selective stabilization of the pro-survival
protein, MCL1. Biochem Biophys Res Commun. 482:1334–1340. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yao Y, Wang X, Li H, Fan J, Qian X, Li H
and Xu Y: Phospholipase D as a key modulator of cancer progression.
Biol Rev Camb Philos Soc. 95:911–935. 2018. View Article : Google Scholar
|
40
|
Saito M, Iwadate M, Higashimoto M, Ono K,
Takebayashi Y and Takenoshita S: Expression of phospholipase D2 in
human colorectal carcinoma. Oncol. Rep. 18:1329–1334. 2017.
|
41
|
Li H, Sun Y, Liang J, Fan Y and Zhang XD:
pH-Sensitive pullulan-DOX conjugate nanoparticles for co-loading
PDTC to suppress growth and chemoresistance of hepatocellular
carcinoma. J Mater Chem B. 3:8070–8078. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cuervo AM, Hu W, Lim B and Dice JF:
IkappaB is a substrate for a selective pathway of lysosomal
proteolysis. Mol Biol Cell. 9:1995–2010. 1998. View Article : Google Scholar : PubMed/NCBI
|