1
|
Snedden WA and Fromm H: Characterization
of the plant homologue of prohibitin, a gene associated with
antiproliferative activity in mammalian cells. Plant Mol Biol.
33:753–756. 1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Loyer X, Potteaux S, Vion AC, Guerin CL,
Boulkroun S, Rautou PE, Ramkhelawon B, Esposito B, Dalloz M, Paul
JL, et al: Inhibition of microRNA-92a prevents endothelial
dysfunction and atherosclerosis in mice. Circ Res. 114:434–443.
2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Merkwirth C and Langer T: Prohibitin
function within mitochondria: Essential roles for cell
proliferation and cristae morphogenesis. Biochim Biophys Acta.
1793:27–32. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Osman C, Merkwirth C and Langer T:
Prohibitins and the functional compartmentalization of
mitochondrial membranes. J Cell Sci. 122:3823–3830. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Artal-Sanz M and Tavernarakis N: Opposing
function of mitochondrial prohibitin in aging. Aging (Albany NY).
2:1004–1011. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Guo X, Wu J, Du J, Ran J and Xu J:
Platelets of type 2 diabetic patients are characterized by high ATP
content and low mitochondrial membrane potential. Platelets.
20:588–593. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Avila C, Huang RJ, Stevens MV, Aponte AM,
Tripodi D, Kim KY and Sack MN: Platelet mitochondrial dysfunction
is evident in type 2 diabetes in association with modifications of
mitochondrial anti-oxidant stress proteins. Exp Clin Endocrinol
Diabetes. 120:248–251. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fuentes E, Araya-Maturana R and Urra FA:
Regulation of mitochondrial function as a promising target in
platelet activation-related diseases. Free Radic Biol Med.
136:172–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xue L, Fletcher GC and Tolkovsky AM:
Mitochondria are selectively eliminated from eukaryotic cells after
blockade of caspases during apoptosis. Curr Biol. 11:361–365. 2001.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lemasters JJ: Selective mitochondrial
autophagy, or mitophagy, as a targeted defense against oxidative
stress, mitochondrial dysfunction, and aging. Rejuvenation Res.
8:3–5. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bhatia-Kissova I and Camougrand N:
Mitophagy: A process that adapts to the cell physiology. Int J
Biochem Cell Biol. 45:30–33. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pieczarka EM, Yamaguchi M, Wellman ML and
Judith Radin M: Platelet vacuoles in a dog with severe
nonregenerative anemia: Evidence of platelet autophagy. Vet Clin
Pathol. 43:326–329. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Feng W, Chang C, Luo D, Su H, Yu S, Hua W,
Chen Z, Hu H and Liu W: Dissection of autophagy in human platelets.
Autophagy. 10:642–651. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cao Y, Cai J, Zhang S, Yuan N, Li X, Fang
Y, Song L, Shang M, Liu S, Zhao W, et al: Loss of autophagy leads
to failure in megakaryopoiesis, megakaryocyte differentiation, and
thrombopoiesis in mice. Exp Hematol. 43:488–494. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee SH, Du J, Stitham J, Atteya G, Lee S,
Xiang Y, Wang D, Jin Y, Leslie KL, Spollett G, et al: Inducing
mitophagy in diabetic platelets protects against severe oxidative
stress. EMBO Mol Med. 8:779–795. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Griffith JM, Basting PJ, Bischof KM, Wrona
EP, Kunka KS, Tancredi AC, Moore JP, Hyman MRL and Slonczewski JL:
Experimental evolution of Escherichia coli K-12 in the
presence of proton motive force (PMF) uncoupler carbonyl cyanide
m-chlorophenylhydrazone selects for mutations affecting PMF-driven
drug efflux pumps. Appl Environ Microbiol. 85:e02792–e02718.
2019.PubMed/NCBI
|
17
|
Rodriguez C, Simon V, Conget P and Vega
IA: Both quiescent and proliferating cells circulate in the blood
of the invasive apple snail Pomacea canaliculata. Fish
Shellfish Immunol. 107:95–103. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Trapnell C, Williams BA, Pertea G,
Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ and Pachter
L: Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell
differentiation. Nat Biotechnol. 28:511–515. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Young MD, Wakefield MJ, Smyth GK and
Oshlack A: Gene ontology analysis for RNA-seq: Accounting for
selection bias. Genome Biol. 11:R142010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kanehisa M, Araki M, Goto S, Hattori M,
Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T
and Yamanishi Y: KEGG for linking genomes to life and the
environment. Nucleic Acids Res. 36:D480–D484. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mao X, Cai T, Olyarchuk JG and Wei L:
Automated genome annotation and pathway identification using the
KEGG orthology (KO) as a controlled vocabulary. Bioinformatics.
21:3787–3793. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ogura M, Morishima Y, Okumura M, Hotta T,
Takamoto S, Ohno R, Hirabayashi N, Nagura H and Saito H: Functional
and morphological differentiation induction of a human
megakaryoblastic leukemia cell line (MEG-01s) by phorbol diesters.
Blood. 72:49–60. 1988. View Article : Google Scholar : PubMed/NCBI
|
24
|
Takeuchi K, Satoh M, Kuno H, Yoshida T,
Kondo H and Takeuchi M: Platelet-like particle formation in the
human megakaryoblastic leukaemia cell lines, MEG-01 and MEG-01s. Br
J Haematol. 100:436–444. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wei Y, Chiang WC, Sumpter R Jr, Mishra P
and Levine B: Prohibitin 2 is an inner mitochondrial membrane
mitophagy receptor. Cell. 168:224–238.e10. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xiao Y, Zhou Y, Lu Y, Zhou K and Cai W:
PHB2 interacts with LC3 and SQSTM1 is required for bile
acids-induced mitophagy in cholestatic liver. Cell Death Dis.
9:1602018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Galluzzi L, Bravo-San Pedro JM and Kroemer
G: Mitophagy: Permitted by prohibitin. Curr Biol. 27:R73–R76. 2017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bavelloni A, Piazzi M, Raffini M, Faenza I
and Blalock WL: Prohibitin 2: At a communications crossroads. IUBMB
Life. 67:239–254. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lahiri V and Klionsky DJ: PHB2/prohibitin
2: An inner membrane mitophagy receptor. Cell Res. 27:311–312.
2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schiattarella GG and Hill JA: Therapeutic
targeting of autophagy in cardiovascular disease. J Mol Cell
Cardiol. 95:86–93. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang Y, Nartiss Y, Steipe B, McQuibban GA
and Kim PK: ROS-induced mitochondrial depolarization initiates
PARK2/PARKIN-dependent mitochondrial degradation by autophagy.
Autophagy. 8:1462–1476. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang Y, Wang Y, Xiang Y, Lee W and Zhang
Y: Prohibitins are involved in protease-activated receptor
1-mediated platelet aggregation. J Thromb Haemost. 10:411–418.
2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lopez JJ, Salido GM, Gómez-Arteta E,
Rosado JA and Pariente JA: Thrombin induces apoptotic events
through the generation of reactive oxygen species in human
platelets. J Thromb Haemost. 5:1283–1291. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yamagishi SI, Edelstein D, Du XL and
Brownlee M: Hyperglycemia potentiates collagen-induced platelet
activation through mitochondrial superoxide overproduction.
Diabetes. 50:1491–1494. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Choo HJ, Saafir TB, Mkumba L, Wagner MB
and Jobe SM: Mitochondrial calcium and reactive oxygen species
regulate agonist-initiated platelet phosphatidylserine exposure.
Arterioscler Thromb Vasc Biol. 32:2946–2955. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jobe SM, Wilson KM, Leo L, Raimondi A,
Molkentin JD, Lentz SR and Di Paola J: Critical role for the
mitochondrial permeability transition pore and cyclophilin D in
platelet activation and thrombosis. Blood. 111:1257–1265. 2008.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Siewiera K, Kassassir H, Talar M, Wieteska
L and Watala C: Higher mitochondrial potential and elevated
mitochondrial respiration are associated with excessive activation
of blood platelets in diabetic rats. Life Sci. 148:293–304. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu F, Liu Y, Luo L, Lu Y, Yew D, Xu J and
Guo K: Platelet mitochondrial dysfunction of DM rats and DM
patients. Int J Clin Exp Med. 8:6937–6946. 2015.PubMed/NCBI
|
39
|
Zhang W, Ren H, Xu C, Zhu C, Wu H, Liu D,
Wang J, Liu L, Li W, Ma Q, et al: Hypoxic mitophagy regulates
mitochondrial quality and platelet activation and determines
severity of I/R heart injury. Elife. 5:e214072016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang W, Ma Q, Siraj S, Ney PA, Liu J,
Liao X, Yuan Y, Li W, Liu L and Chen Q: Nix-mediated mitophagy
regulates platelet activation and life span. Blood Adv.
3:2342–2354. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Eitel I, Stiermaier T, Rommel KP, Fuernau
G, Sandri M, Mangner N, Linke A, Erbs S, Lurz P, Boudriot E, et al:
Cardioprotection by combined intrahospital remote ischaemic
perconditioning and postconditioning in ST-elevation myocardial
infarction: The randomized LIPSIA CONDITIONING trial. Eur Heart J.
36:3049–3057. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hausenloy DJ, Barrabes JA, Bøtker HE,
Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P,
Carbrera-Fuentes HA, Heusch G, et al: Ischaemic conditioning and
targeting reperfusion injury: A 30 year voyage of discovery. Basic
Res Cardiol. 111:702016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang W, Siraj S, Zhang R and Chen Q:
Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and
protects the heart from I/R injury. Autophagy. 13:1080–1081. 2017.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang W, Chen C, Wang J, Liu L, He Y and
Chen Q: Mitophagy in cardiomyocytes and in platelets: A major
mechanism of cardioprotection against ischemia/reperfusion injury.
Physiology (Bethesda). 33:86–98. 2018.PubMed/NCBI
|
45
|
Penz S, Reininger AJ, Brandl R, Goyal P,
Rabie T, Bernlochner I, Bernlochner I, Rother E, Goetz C, Engelmann
B, et al: Human atheromatous plaques stimulate thrombus formation
by activating platelet glycoprotein VI. FASEB J. 19:898–909. 2005.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Lv W, Lin Y, Song W, Sun K, Yu H, Zhang Y,
Zhang C, Li L, Suo M, Hui R and Chen J: Variants of COL3A1 are
associated with the risk of stroke recurrence and prognosis in the
Chinese population: A prospective study. J Mol Neurosci.
53:196–203. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Buxhofer-Ausch V, Steurer M, Sormann S,
Schloegl E, Schimetta W, Gisslinger B, Ruckser R, Gastl G and
Gisslinger H: Influence of platelet and white blood cell counts on
major thrombosis-analysis from a patient registry in essential
thrombocythemia. Eur J Haematol. 97:511–516. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Fleming I: Molecular mechanisms underlying
the activation of eNOS. Pflugers Arch. 459:793–806. 2010.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Xia N, Forstermann U and Li H: Resveratrol
and endothelial nitric oxide. Molecules. 19:16102–16121. 2014.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Khan M, Meduru S, Gogna R, Madan E, Citro
L, Kuppusamy ML, Sayyid M, Mostafa M, Hamlin RL and Kuppusamy P:
Oxygen cycling in conjunction with stem cell transplantation
induces NOS3 expression leading to attenuation of fibrosis and
improved cardiac function. Cardiovasc Res. 93:89–99. 2012.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Bharath LP, Mueller R, Li Y, Ruan T, Kunz
D, Goodrich R, Mills T, Deeter L, Sargsyan A, Babu PVA, et al:
Impairment of autophagy in endothelial cells prevents
shear-stress-induced increases in nitric oxide bioavailability. Can
J Physiol Pharmacol. 92:605–612. 2014. View Article : Google Scholar : PubMed/NCBI
|