1
|
Lin FY and Chintagumpala MM: Neonatal
retinoblastoma. Clin Perinatol. 48:53–70. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee C and Kim JK: Chromatin regulators in
retinoblastoma: Biological roles and therapeutic applications. J
Cell Physiol. 236:2318–2332. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fabian ID, Johnson KP, Stacey AW, Sagoo MS
and Reddy MA: Focal laser treatment in addition to chemotherapy for
retinoblastoma. Cochrane Database Syst Rev.
6:CD0123662017.PubMed/NCBI
|
4
|
Evangelatos G, Fragoulis GE, Koulouri V
and Lambrou GI: MicroRNAs in rheumatoid arthritis: From
pathogenesis to clinical impact. Autoimmun Rev. 18:1023912019.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Rupaimoole R and Slack FJ: MicroRNA
therapeutics: Towards a new era for the management of cancer and
other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dimaras H, Corson TW, Cobrinik D, White A,
Zhao J, Munier FL, Abramson DH, Shields CL, Chantada GL, Njuguna F,
et al: Retinoblastoma. Nat Rev Dis Primers. 1:150212015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zeng R, Huang J, Sun Y and Luo J: Cell
proliferation is induced in renal cell carcinoma through miR-92a-3p
upregulation by targeting FBXW7. Oncol Lett. 19:3258–3268.
2020.PubMed/NCBI
|
9
|
Wang H, Li X, Li T, Wang L, Wu X, Liu J,
Xu Y and Wei W: Multiple roles of microRNA-146a in immune responses
and hepatocellular carcinoma. Oncol Lett. 18:5033–5042.
2019.PubMed/NCBI
|
10
|
Virga F, Quirico L, Cucinelli S, Mazzone
M, Taverna D and Orso F: MicroRNA-mediated metabolic shaping of the
tumor microenvironment. Cancers (Basel). 13:1272021. View Article : Google Scholar
|
11
|
Annese T, Tamma R, De Giorgis M and
Ribatti D: microRNAs biogenesis, functions and role in tumor
angiogenesis. Front Oncol. 10:5810072020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lu L, Wu M, Lu Y, Zhao Z, Liu T, Fu W and
Li W: MicroRNA-424 regulates cisplatin resistance of gastric cancer
by targeting SMURF1 based on GEO database and primary validation in
human gastric cancer tissues. OncoTargets Ther. 12:7623–7636. 2019.
View Article : Google Scholar
|
13
|
Chen Q, Guo SM, Huang HQ, Huang GP, Li Y,
Li ZH, Huang R, Xiao L, Fan CR, Yuan Q, et al: Long noncoding RNA
SBF2-AS1 contributes to the growth and metastatic phenotypes of
NSCLC via regulating miR-338-3p/ADAM17 axis. Aging (Albany NY).
12:17902–17920. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Z, Liu F, Wang F, Yang X and Guo W:
CircZNF609 promotes cell proliferation, migration, invasion, and
glycolysis in nasopharyngeal carcinoma through regulating HRAS via
miR-338-3p. Mol Cell Biochem. 476:175–186. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu H, Zhang Q, Sun Y, Wu D and Liu L:
LINC00689 induces gastric cancer progression via modulating the
miR-338-3p/HOXA3 axis. J Gene Med. 22:e32752020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Buckanovich RJ, Posner JB and Darnell RB:
Nova, the paraneoplastic Ri antigen, is homologous to an
RNA-binding protein and is specifically expressed in the developing
motor system. Neuron. 11:657–672. 1993. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gumina V, Colombrita C, Fallini C,
Bossolasco P, Maraschi AM, Landers JE, Silani V and Ratti A: TDP-43
and NOVA-1 RNA-binding proteins as competitive splicing regulators
of the schizophrenia-associated TNIK gene. Biochim Biophys Acta
Gene Regul Mech. 1862:1944132019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang YA, Liu HN, Zhu JM, Zhang DY, Shen
XZ and Liu TT: RNA binding protein Nova1 promotes tumor growth in
vivo and its potential mechanism as an oncogene may due to its
interaction with GABAA Receptor-γ2. J Biomed Sci. 23:712016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Bai S, Tian B, Li A, Yao Q, Zhang G and Li
F: MicroRNA-125b promotes tumor growth and suppresses apoptosis by
targeting DRAM2 in retinoblastoma. Eye (Lond). 30:1630–1638. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Jwala J, Vadlapatla RK, Vadlapudi AD,
Boddu SH, Pal D and Mitra AK: Differential expression of folate
receptor-alpha, sodium-dependent multivitamin transporter, and
amino acid transporter (B (0, +)) in human retinoblastoma (Y-79)
and retinal pigment epithelial (ARPE-19) cell lines. J Ocul
Pharmacol Ther. 28:237–244. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Q, Zhu Y, Zuo G, Chen X, Cheng J and
Zhang S: LINC00858 promotes retinoblastoma cell proliferation,
migration and invasion by inhibiting miR-3182. Exp Ther Med.
19:999–1005. 2020.PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Yu ACY, Chern YJ, Zhang P, Pasiliao CC,
Rahman M, Chang G, Ren J and Tai IT: Inhibition of nucleophosmin 1
suppresses colorectal cancer tumor growth of patient-derived
xenografts via activation of p53 and inhibition of AKT. Cancer Biol
Ther. 22:112–123. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Francis JH, Richards AL, Mandelker DL,
Berger MF, Walsh MF, Dunkel IJ, Donoghue MT and Abramson DH:
Molecular changes in retinoblastoma beyond RB1: Findings from
next-generation sequencing. Cancers (Basel). 13:1492021. View Article : Google Scholar
|
25
|
Guzman F, Fazeli Y, Khuu M, Salcido K,
Singh S and Benavente CA: Retinoblastoma tumor suppressor protein
roles in epigenetic regulation. Cancers (Basel). 12:28072020.
View Article : Google Scholar
|
26
|
Zhang C and Wu S: microRNA-378a-3p
restrains the proliferation of retinoblastoma cells but promotes
apoptosis of retinoblastoma cells via inhibition of FOXG1. Invest
Ophthalmol Vis Sci. 61:312020. View Article : Google Scholar
|
27
|
Kashiwa A, Aiba T, Makimoto H, Shimamoto
K, Yamagata K, Kamakura T, Wada M, Miyamoto K, Inoue-Yamada Y,
Ishibashi K, et al: Systematic evaluation of KCNQ1 variant using
ACMG/AMP guidelines and risk stratification in long QT syndrome
type 1. Circ Genom Precis Med. Sep 16–2020.(Epub ahead of print).
doi: 10.1161/CIRCGEN.120.002926. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang Y and Qin H: miR-338-3p targets RAB23
and suppresses tumorigenicity of prostate cancer cells. Am J Cancer
Res. 8:2564–2574. 2018.PubMed/NCBI
|
29
|
Wang L, Peng X, Lu X, Wei Q, Chen M and
Liu L: Inhibition of hsa_circ_0001313 (circCCDC66) induction
enhances the radio-sensitivity of colon cancer cells via tumor
suppressor miR-338-3p: Effects of cicr_0001313 on colon cancer
radio-sensitivity. Pathol Res Pract. 215:689–696. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Raizis AM, Racher HM, Foucal A, Dimaras H,
Gallie BL and George PM: DNA hypermethylation/boundary control loss
identified in retinoblastomas associated with genetic and
epigenetic inactivation of the RB1 gene promoter. Epigenetics. Dec
1–2020.(Epub ahead of print). doi: 10.1080/15592294.2020.1834911.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Mehyar M, Mosallam M, Tbakhi A, Saab A,
Sultan I, Deebajah R, Jaradat I, AlJabari R, Mohammad M, AlNawaiseh
I, et al: Impact of RB1 gene mutation type in retinoblastoma
patients on clinical presentation and management outcome. Hematol
Oncol Stem Cell Ther. 13:152–159. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sayed ME, Yuan L, Robin JD, Tedone E,
Batten K, Dahlson N, Wright WE, Shay JW and Ludlow AT: NOVA1
directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in
cancer cells. Oncogene. 38:2937–2952. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Villate O, Turatsinze JV, Mascali LG,
Grieco FA, Nogueira TC, Cunha DA, Nardelli TR, Sammeth M, Salunkhe
VA, Esguerra JL, et al: Nova1 is a master regulator of alternative
splicing in pancreatic beta cells. Nucleic Acids Res.
42:11818–11830. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Trujillo CA, Rice ES, Schaefer NK, Chaim
IA, Wheeler EC, Madrigal AA, Buchanan J, Preissl S, Wang A, Negraes
PD, et al: Reintroduction of the archaic variant of NOVA1 in
cortical organoids alters neurodevelopment. Science.
371:eaax25372021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim DY, Choi JA, Koh JY and Yoon YH:
Efficacy and safety of aflibercept in in vitro and in vivo models
of retinoblastoma. J Exp Clin Cancer Res. 35:1712016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kulkarni AD, van Ginkel PR, Darjatmoko SR,
Lindstrom MJ and Albert DM: Use of combination therapy with
cisplatin and calcitriol in the treatment of Y-79 human
retinoblastoma xenograft model. Br J Ophthalmol. 93:1105–1108.
2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu XM, Li XF and Li JC: MiR-146a
functions as a potential tumor suppressor in retinoblastoma by
negatively regulate neuro-oncological ventral antigen-1. Kaohsiung
J Med Sci. Dec 19–2020.(Epub ahead of print). doi:
10.1002/kjm2.12337. View Article : Google Scholar
|
38
|
Xu L, Zhu S, Tang A and Liu W: LncRNA
MBLN1-AS1 inhibits the progression of retinoblastoma through
targeting miR-338-5p-Wnt/β-catenin signaling pathway. Inflamm Res.
70:217–227. 2021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu H, Yuan HF, Xu D, Chen KJ, Tan N and
Zheng QJ: Circular RNA circ_0000034 upregulates STX17 level to
promote human retinoblastoma development via inhibiting miR-361-3p.
Eur Rev Med Pharmacol Sci. 24:12080–12092. 2020.PubMed/NCBI
|