A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review)
- Authors:
- Lan-Lan Mi
- Yue Zhu
- Hong-Yan Lu
-
Affiliations: Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China - Published online on: March 26, 2021 https://doi.org/10.3892/mmr.2021.12042
- Article Number: 403
-
Copyright: © Mi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN and Alvira CM: Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. Elife. 9:e568902020. View Article : Google Scholar : PubMed/NCBI | |
Martinez FD: Early-life origins of chronic obstructive pulmonary disease. N Engl J Med. 375:871–878. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor P, et al: Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 373:111–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
McGeachie MJ, Yates KP, Zhou X, Guo F, Sternberg AL, Van Natta ML, Wise RA, Szefler SJ, Sharma S, Kho AT, et al: Patterns of growth and decline in lung function in persistent childhood asthma. N Engl J Med. 374:1842–1852. 2016. View Article : Google Scholar : PubMed/NCBI | |
Loering S, Cameron GJM, Bhatt NP, Belz GT, Foster PS, Hansbro PM and Starkey MR: Differences in pulmonary group 2 innate lymphoid cells are dependent on mouse age, sex and strain. Immunol Cell Biol. Dec 8–2020.(Epub ahead of print). doi: 10.1111/imcb.12430. PubMed/NCBI | |
Lan F, Zhang N, Holtappels G, De Ruyck N, Krysko O, Van Crombruggen K, Braun H, Johnston SL, Papadopoulos NG, Zhang L and Bachert C: Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines. Am J Respir Crit Care Med. 198:452–463. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sciurba JC, Gieseck RL, Jiwrajka N, White SD, Karmele EP, Redes J, Vannella KM, Henderson NC, Wynn TA and Hart KM: Fibroblast-specific integrin-alpha V differentially regulates type 17 and type 2 driven inflammation and fibrosis. J Pathol. 248:16–29. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hajimohammadi B, Athari SM, Abdollahi M, Vahedi G and Athari SS: Oral administration of acrylamide worsens the inflammatory responses in the airways of asthmatic mice through agitation of oxidative stress in the lungs. Front Immunol. 11:19402020. View Article : Google Scholar : PubMed/NCBI | |
Ryan NM and Oghumu S: Role of mast cells in the generation of a T-helper type 2 dominated anti-helminthic immune response. Biosci Rep. 39:BSR201817712019. View Article : Google Scholar : PubMed/NCBI | |
Choi JP, Kim YM, Choi HI, Choi SJ, Park HT, Lee WH, Gho YS, Jee YK, Jeon SG and Kim YK: An important role of tumor necrosis factor receptor-2 on natural killer T cells on the development of dsRNA-enhanced Th2 cell response to inhaled allergens. Allergy. 69:186–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Cornell TT, LeVine A, Berlin AA, Hinkovska-Galcheva V, Fleszar AJ, Lukacs NW and Shanley TP: Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation. Clin Exp Immunol. 172:263–279. 2013. View Article : Google Scholar : PubMed/NCBI | |
Helou DG, Shafiei-Jahani P, Lo R, Howard E, Hurrell BP, Galle-Treger L, Painter JD, Lewis G, Soroosh P, Sharpe AH and Akbari O: PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat Commun. 11:39982020. View Article : Google Scholar : PubMed/NCBI | |
Leyva-Castillo JM, Galand C, Mashiko S, Bissonnette R, McGurk A, Ziegler SF, Dong C, McKenzie ANJ, Sarfati M and Geha RS: ILC2 activation by keratinocyte-derived IL-25 drives IL-13 production at sites of allergic skin inflammation. J Allergy Clin Immunol. 145:1606–1614.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miller MM, Patel PS, Bao K, Danhorn T, O'Connor BP and Reinhardt RL: BATF acts as an essential regulator of IL-25-responsive migratory ILC2 cell fate and function. Sci Immunol. 5:eaay39942020. View Article : Google Scholar : PubMed/NCBI | |
Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, et al: IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 15:985–995. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S, Menon S, Seymour B, Jackson C, Kung TT, et al: New IL-17 family members promote Th1 or Th2 responses in the lung: In vivo function of the novel cytokine IL-25. J Immunol. 169:443–453. 2002. View Article : Google Scholar : PubMed/NCBI | |
Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST, et al: MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity. 41:283–295. 2014. View Article : Google Scholar : PubMed/NCBI | |
She L, Alanazi HH, Yan L, Brooks EG, Dube PH, Xiang Y, Zhang F, Sun Y, Liu Y, Zhang X and Li XD: Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness. PLoS One. 15:e02367442020. View Article : Google Scholar : PubMed/NCBI | |
Entwistle LJ, Gregory LG, Oliver RA, Branchett WJ, Puttur F and Lloyd CM: Pulmonary group 2 innate lymphoid cell phenotype is context specific: Determining the effect of strain, location, and stimuli. Front Immunol. 10:31142019. View Article : Google Scholar : PubMed/NCBI | |
Gieseck RL III, Wilson MS and Wynn TA: Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 18:62–76. 2018. View Article : Google Scholar : PubMed/NCBI | |
Katsura Y, Harada N, Harada S, Ishimori A, Makino F, Ito J, Kamachi F, Okumura K, Akiba H, Atsuta R and Takahashi K: Characteristics of alveolar macrophages from murine models of OVA-induced allergic airway inflammation and LPS-induced acute airway inflammation. Exp Lung Res. 41:370–382. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fang SB, Zhang HY, Meng XC, Wang C, He BX, Peng YQ, Xu ZB, Fan XL, Wu ZJ, Wu ZC, et al: Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis. 11:4092020. View Article : Google Scholar : PubMed/NCBI | |
Su B, Han H, Gong Y, Li X, Ji C, Yao J, Yang J, Hu W, Zhao W, Li J, et al: Let-7d inhibits intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-13 and IL-10. Cancer Immunol Immunother. Nov 25–2020.(Epub ahead of print). doi: 10.1007/s00262-020-02791-6. View Article : Google Scholar | |
De Salvo C, Buela KA and Pizarro TT: Cytokine-mediated regulation of innate lymphoid cell plasticity in gut mucosal immunity. Front Immunol. 11:5853192020. View Article : Google Scholar : PubMed/NCBI | |
Silver J, Humbles AA and Ohne Y: Isolation, culture, and induction of plasticity in ILC2s. Methods Mol Biol. 2121:115–127. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vacca P, Chiossone L, Mingari MC and Moretta L: Heterogeneity of NK cells and other innate lymphoid cells in human and murine decidua. Front Immunol. 10:1702019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Bostick JW, Ye J, Qiu J, Zhang B, Urban JF Jr, Avram D and Zhou L: Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity. 49:915–928.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Klose CS and Artis D: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 17:765–774. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kabata H, Moro K and Koyasu S: The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev. 286:37–52. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pasha MA, Patel G, Hopp R and Yang Q: Role of innate lymphoid cells in allergic diseases. Allergy Asthma Proc. 40:138–145. 2019. View Article : Google Scholar : PubMed/NCBI | |
Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, et al: Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 12:1045–1054. 2011. View Article : Google Scholar : PubMed/NCBI | |
Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang CL, et al: Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 48:10602018. View Article : Google Scholar : PubMed/NCBI | |
Camelo A, Rosignoli G, Ohne Y, Stewart RA, Overed-Sayer C, Sleeman MA and May RD: IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 1:577–589. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr and Paul WE: IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol. 16:161–169. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen S, Chi Y, Yang Y, Chen X, Wang H, Lv Z, Wang J, Yuan L, Huang P, et al: Kinetics of the accumulation of group 2 innate lymphoid cells in IL-33-induced and IL-25-induced murine models of asthma: A potential role for the chemokine CXCL16. Cell Mol Immunol. 16:75–86. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, et al: A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 210:2939–2950. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mohapatra A, Van Dyken SJ, Schneider C, Nussbaum JC, Liang HE and Locksley RM: Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol. 9:275–286. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moretti S, Renga G, Oikonomou V, Galosi C, Pariano M, Iannitti RG, Borghi M, Puccetti M, De Zuani M, Pucillo CE, et al: A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat Commun. 8:140172017. View Article : Google Scholar : PubMed/NCBI | |
Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H and Stockinger B: An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol. 12:1071–1077. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bartemes KR, Kephart GM, Fox SJ and Kita H: Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 134:671–678.e4. 2014. View Article : Google Scholar : PubMed/NCBI | |
Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA, Kuroki Y, Ohara O, Koyasu S and Kubo M: Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity. 40:758–771. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matsuki A, Takatori H, Makita S, Yokota M, Tamachi T, Suto A, Suzuki K, Hirose K and Nakajima H: T-bet inhibits innate lymphoid cell-mediated eosinophilic airway inflammation by suppressing IL-9 production. J Allergy Clin Immunol. 139:1355–1367.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Jin Y, Lai D, Wang J, Wang Y, Wu X, Scott M, Li Y, Hou J, Billiar T, et al: RAGE-induced ILC2 expansion in acute lung injury due to haemorrhagic shock. Thorax. 75:209–219. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ishii T, Muroi M, Horiguchi K, Tanamoto KI, Nagase T and Yamashita N: Activation through toll-like receptor 2 on group 2 innate lymphoid cells can induce asthmatic characteristics. Clin Exp Allergy. 49:1624–1632. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maggi L, Montaini G, Mazzoni A, Rossettini B, Capone M, Rossi MC, Santarlasci V, Liotta F, Rossi O, Gallo O, et al: Human circulating group 2 innate lymphoid cells can express CD154 and promote IgE production. J Allergy Clin Immunol. 139:964–976.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D, Levy M, Salame TM, Weiner A, David E, et al: The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell. 166:1231–1246.e13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, Gilfillan S and Colonna M; Immunological Genome Consortium, : Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 16:306–317. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Jang JH, Lee MB, Jung ID, Kim YM, Park YM and Choi WS: A novel IL-10-producing innate lymphoid cells (ILC10) in a contact hypersensitivity mouse model. BMB Rep. 49:293–296. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, Abdulnour RE, Thakore PI, Schnell A, Lambden C, Herbst RH, et al: Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity. 51:709–723.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ho J, Bailey M, Zaunders J, Mrad N, Sacks R, Sewell W and Harvey RJ: Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clin Exp Allergy. 45:394–403. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jeffery HC, McDowell P, Lutz P, Wawman RE, Roberts S, Bagnall C, Birtwistle J, Adams DH and Oo YH: Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score. PLoS One. 12:e01886492017. View Article : Google Scholar : PubMed/NCBI | |
Campbell L, Hepworth MR, Whittingham-Dowd J, Thompson S, Bancroft AJ, Hayes KS, Shaw TN, Dickey BF, Flamar AL, Artis D, et al: ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J Exp Med. 216:2714–2723. 2019. View Article : Google Scholar : PubMed/NCBI | |
D'Souza SS, Shen X, Fung ITH, Ye L, Kuentzel M, Chittur SV, Furuya Y, Siebel CW, Maillard IP, Metzger DW and Yang Q: Compartmentalized effects of aging on group 2 innate lymphoid cell development and function. Aging Cell. 18:e130192019. View Article : Google Scholar : PubMed/NCBI | |
Ghaedi M, Shen ZY, Orangi M, Martinez-Gonzalez I, Wei L, Lu X, Das A, Heravi-Moussavi A, Marra MA, Bhandoola A and Takei F: Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J Exp Med. 217:jem.20182293. 2020. View Article : Google Scholar : PubMed/NCBI | |
Steer CA, Matha L, Shim H and Takei F: Lung group 2 innate lymphoid cells are trained by endogenous IL-33 in the neonatal period. JCI Insight. 5:e1359612020. View Article : Google Scholar | |
Lindquist RL, Bayat-Sarmadi J, Leben R, Niesner R and Hauser AE: NAD(P)H oxidase activity in the small intestine is predominantly found in enterocytes, not professional phagocytes. Int J Mol Sci. 19:13652018. View Article : Google Scholar | |
Vellozo NS, Pereira-Marques ST, Cabral-Piccin MP, Filardy AA, Ribeiro-Gomes FL, Rigoni TS, DosReis GA and Lopes MF: All-trans retinoic acid promotes an M1- to M2-phenotype shift and inhibits macrophage-mediated immunity to leishmania major. Front Immunol. 8:15602017. View Article : Google Scholar : PubMed/NCBI | |
Moreira AP, Cavassani KA, Hullinger R, Rosada RS, Fong DJ, Murray L, Hesson DP and Hogaboam CM: Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J Allergy Clin Immunol. 126:712–721.e7. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu Y and Hirschi KK: Tissue-resident macrophage development and function. Front Cell Dev Biol. 8:6178792020. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Zhai H, Zhang T, Li S, Li N, Chen J, Gu M, Qin Z and Liu X: New therapeutic strategies for IPF: Based on the ‘phagocytosis-secretion-immunization’ network regulation mechanism of pulmonary macrophages. Biomed Pharmacother. 118:1092302019. View Article : Google Scholar : PubMed/NCBI | |
Li R, Shang Y, Hu X, Yu Y, Zhou T, Xiong W and Zou X: ATP/P2X7r axis mediates the pathological process of allergic asthma by inducing M2 polarization of alveolar macrophages. Exp Cell Res. 386:1117082020. View Article : Google Scholar : PubMed/NCBI | |
Ke X, Chen C, Song Y, Cai Q, Li J, Tang Y, Han X, Qu W, Chen A, Wang H, et al: Hypoxia modifies the polarization of macrophages and their inflammatory microenvironment, and inhibits malignant behavior in cancer cells. Oncol Lett. 18:5871–5878. 2019.PubMed/NCBI | |
Bazzan E, Turato G, Tine M, Radu CM, Balestro E, Rigobello C, Biondini D, Schiavon M, Lunardi F, Baraldo S, et al: Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity. Respir Res. 18:402017. View Article : Google Scholar : PubMed/NCBI | |
Lin F, Song C, Zeng Y, Li Y, Li H, Liu B, Dai M and Pan P: Canagliflozin alleviates LPS-induced acute lung injury by modulating alveolar macrophage polarization. Int Immunopharmacol. 88:1069692020. View Article : Google Scholar : PubMed/NCBI | |
Soliman E, Elhassanny AE, Malur A, McPeek M, Bell A, Leffler N, Van Dross R, Jones JL, Malur AG and Thomassen MJ: Impaired mitochondrial function of alveolar macrophages in carbon nanotube-induced chronic pulmonary granulomatous disease. Toxicology. 445:1525982020. View Article : Google Scholar : PubMed/NCBI | |
Nenasheva T, Gerasimova T, Serdyuk Y, Grigor'eva E, Kosmiadi G, Nikolaev A, Dashinimaev E and Lyadova I: Macrophages derived from human induced pluripotent stem cells are low-activated ‘Naive-Like’ cells capable of restricting mycobacteria growth. Front Immunol. 11:10162020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang Y, Wu G, Xiong W, Gu W and Wang CY: Macrophages: Friend or foe in idiopathic pulmonary fibrosis? Respir Res. 19:1702018. View Article : Google Scholar : PubMed/NCBI | |
Bronte V and Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grabarz F, Aguiar CF, Correa-Costa M, Braga TT, Hyane MI, Andrade-Oliveira V, Landgraf MA and Camara NOS: Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis. Inflammopharmacology. 26:491–504. 2018. View Article : Google Scholar : PubMed/NCBI | |
de Campos GY, Oliveira RA, Oliveira-Brito PK, Roque-Barreira MC and da Silva TA: Pro-inflammatory response ensured by LPS and Pam3CSK4 in RAW 264.7 cells did not improve a fungistatic effect on Cryptococcus gattii infection. PeerJ. 8:e102952020. View Article : Google Scholar : PubMed/NCBI | |
Anthony RM, Urban JF Jr, Alem F, Hamed HA, Rozo CT, Boucher JL, Van Rooijen N and Gause WC: Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med. 12:955–960. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Fu X, Chen X, Han X and Dong P: M2 macrophages induce EMT through the TGF-beta/Smad2 signaling pathway. Cell Biol Int. 41:960–968. 2017. View Article : Google Scholar : PubMed/NCBI | |
Loering S, Cameron GJ, Starkey MR and Hansbro PM: Lung development and emerging roles for type 2 immunity. J Pathol. 247:686–696. 2019. View Article : Google Scholar : PubMed/NCBI | |
Blackwell TS, Hipps AN, Yamamoto Y, Han W, Barham WJ, Ostrowski MC, Yull FE and Prince LS: NF-kappaB signaling in fetal lung macrophages disrupts airway morphogenesis. J Immunol. 187:2740–2747. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jones CV, Williams TM, Walker KA, Dickinson H, Sakkal S, Rumballe BA, Little MH, Jenkin G and Ricardo SD: M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res. 14:412013. View Article : Google Scholar : PubMed/NCBI | |
Saluzzo S, Gorki AD, Rana BMJ, Martins R, Scanlon S, Starkl P, Lakovits K, Hladik A, Korosec A, Sharif O, et al: First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep. 18:1893–1905. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schneider C, Lee J, Koga S, Ricardo-Gonzalez RR, Nussbaum JC, Smith LK, Villeda SA, Liang HE and Locksley RM: Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity. 50:1425–1438.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Mao K, Chen X, Sun MA, Kawabe T, Li W, Usher N, Zhu J, Urban JF Jr, Paul WE and Germain RN: S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 359:114–119. 2018. View Article : Google Scholar : PubMed/NCBI | |
Steer CA, Martinez-Gonzalez I, Ghaedi M, Allinger P, Matha L and Takei F: Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. J Allergy Clin Immunol. 140:593–595.e3. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE and Locksley RM: Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 502:245–248. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Kleer IM, Kool M, de Bruijn MJ, Willart M, van Moorleghem J, Schuijs MJ, Plantinga M, Beyaert R, Hams E, Fallon PG, et al: Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity. 45:1285–1298. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ghaedi M, Steer CA, Martinez-Gonzalez I, Halim TYF, Abraham N and Takei F: Common-lymphoid-progenitor-independent pathways of innate and T lymphocyte development. Cell Rep. 15:471–480. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sahoo D, Zaramela LS, Hernandez GE, Mai U, Taheri S, Dang D, Stouch AN, Medal RM, McCoy AM, Aschner JL, et al: Transcriptional profiling of lung macrophages identifies a predictive signature for inflammatory lung disease in preterm infants. Commun Biol. 3:2592020. View Article : Google Scholar : PubMed/NCBI | |
Ubags NDJ, Alejandre Alcazar MA, Kallapur SG, Knapp S, Lanone S, Lloyd CM, Morty RE, Pattaroni C, Reynaert NL, Rottier RJ, et al: Early origins of lung disease: Towards an interdisciplinary approach. Eur Respir Rev. 29:2001912020. View Article : Google Scholar : PubMed/NCBI | |
Obata-Ninomiya K, Ishiwata K, Tsutsui H, Nei Y, Yoshikawa S, Kawano Y, Minegishi Y, Ohta N, Watanabe N, Kanuka H and Karasuyama H: The skin is an important bulwark of acquired immunity against intestinal helminths. J Exp Med. 210:2583–2595. 2013. View Article : Google Scholar : PubMed/NCBI | |
Minutti CM, Jackson-Jones LH, Garcia-Fojeda B, Knipper JA, Sutherland TE, Logan N, Ringqvist E, Guillamat-Prats R, Ferenbach DA, Artigas A, et al: Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science. 356:1076–1080. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Kammerl IE, Vosyka O, Baumann T, Yu Y, Wu Y, Irmler M, Overkleeft HS, Beckers J, Eickelberg O, et al: Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death Differ. 23:1026–1037. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Chang Y, Bae B, Sohn KH, Cho SH, Chung DH, Kang HR and Kim HY: Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J Allergy Clin Immunol. 143:1769–1782.e11. 2019. View Article : Google Scholar : PubMed/NCBI | |
King SD and Chen SY: Recent progress on surfactant protein A: cellular function in lung and kidney disease development. Am J Physiol Cell Physiol. 319:C316–C320. 2020. View Article : Google Scholar : PubMed/NCBI | |
Buckley S, Bui KC, Hussain M and Warburton D: Dynamics of TGF-beta 3 peptide activity during rat alveolar epithelial cell proliferative recovery from acute hyperoxia. Am J Physiol. 271:L54–L60. 1996.PubMed/NCBI | |
Lechner AJ, Driver IH, Lee J, Conroy CM, Nagle A, Locksley RM and Rock JR: Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell. 21:120–134.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rindler TN, Stockman CA, Filuta AL, Brown KM, Snowball JM, Zhou W, Veldhuizen R, Zink EM, Dautel SE, Clair G, et al: Alveolar injury and regeneration following deletion of ABCA3. JCI Insight. 2:e973812017. View Article : Google Scholar | |
Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, et al: IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 183:6469–6477. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cohen M, Giladi A, Gorki AD, Solodkin DG, Zada M, Hladik A, Miklosi A, Salame TM, Halpern KB, David E, et al: Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell. 175:1031–1044.e18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dagher R, Copenhaver AM, Besnard V, Berlin A, Hamidi F, Maret M, Wang J, Qu X, Shrestha Y, Wu J, et al: IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat Commun. 11:47862020. View Article : Google Scholar : PubMed/NCBI | |
Silva JD, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF, O'Kane C and Krasnodembskaya AD: MSC extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J. Dec 17–2020.(Epub ahead of print). doi: 10.1183/13993003.02978-2020. View Article : Google Scholar | |
Duan F, Guo L, Yang L, Han Y, Thakur A, Nilsson-Payant BE, Wang P, Zhang Z, Ma CY, Zhou X, et al: Modeling COVID-19 with human pluripotent stem cell-derived cells reveals synergistic effects of anti-inflammatory macrophages with ACE2 inhibition against SARS-CoV-2. Res Sq. Aug 20–2020.(Epub ahead of print). doi: 10.21203/rs.3.rs-62758/v1. PubMed/NCBI | |
Sersar SI, Elnahas HA, Saleh AB, Moussa SA and Ghafar WA: Pulmonary parasitosis: Applied clinical and therapeutic issues. Heart Lung Circ. 15:24–29. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miller MM and Reinhardt RL: The heterogeneity, origins, and impact of migratory iILC2 cells in anti-helminth immunity. Front Immunol. 11:15942020. View Article : Google Scholar : PubMed/NCBI | |
Meiners J, Reitz M, Rudiger N, Turner JE, Heepmann L, Rudolf L, Hartmann W, McSorley HJ and Breloer M: IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- and IL-9-driven mast cell activation. PLoS Pathog. 16:e10091212020. View Article : Google Scholar : PubMed/NCBI | |
Webb LM and Tait Wojno ED: The role of rare innate immune cells in Type 2 immune activation against parasitic helminths. Parasitology. 144:1288–1301. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, Harvie M, Painter G, Johnston K, Ferguson P, et al: ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 6:69702015. View Article : Google Scholar : PubMed/NCBI | |
Nieves W, Hung LY, Oniskey TK, Boon L, Foretz M, Viollet B and Herbert DR: Myeloid-restricted AMPKα1 promotes host immunity and protects against IL-12/23p40-dependent lung injury during hookworm infection. J Immunol. 196:4632–4640. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thawer S, Auret J, Schnoeller C, Chetty A, Smith K, Darby M, Roberts L, Mackay RM, Whitwell HJ, Timms JF, et al: Surfactant protein-D is essential for immunity to helminth infection. PLoS Pathog. 12:e10054612016. View Article : Google Scholar : PubMed/NCBI | |
Snietura M, Brewczynski A, Kopec A and Rutkowski T: Infiltrates of M2-like tumour-associated macrophages are adverse prognostic factor in patients with human papillomavirus-negative but not in human papillomavirus-positive oropharyngeal squamous cell carcinoma. Pathobiology. 87:75–86. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yan C, Wu J, Xu N, Li J, Zhou QY, Yang HM, Cheng XD, Liu JX, Dong X, Koda S, et al: TLR4 deficiency exacerbates biliary injuries and peribiliary fibrosis caused by clonorchis sinensis in a resistant mouse strain. Front Cell Infect Microbiol. 10:5269972021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang CS, Fang BB, Hou J, Li WD, Li ZD, Li L, Bi XJ, Li L, Abulizi A, et al: Dual role of hepatic macrophages in the establishment of the echinococcus multilocularis metacestode in mice. Front Immunol. 11:6006352021. View Article : Google Scholar : PubMed/NCBI | |
Kindermann M, Knipfer L, Obermeyer S, Muller U, Alber G, Bogdan C, Schleicher U, Neurath MF and Wirtz S: Group 2 innate lymphoid cells (ILC2) suppress beneficial type 1 immune responses during pulmonary cryptococcosis. Front Immunol. 11:2092020. View Article : Google Scholar : PubMed/NCBI | |
Han M, Ishikawa T, Bermick JR, Rajput C, Lei J, Goldsmith AM, Jarman CR, Lee J, Bentley JK and Hershenson MB: IL-1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to early-life rhinovirus infection in mice. Allergy. 75:2005–2019. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M, Samuchiwal SK, Quehenberger O, Boyce JA and Balestrieri B: Macrophages regulate lung ILC2 activation via Pla2g5-dependent mechanisms. Mucosal Immunol. 11:615–626. 2018. View Article : Google Scholar : PubMed/NCBI | |
Panova V, Gogoi M, Rodriguez-Rodriguez N, Sivasubramaniam M, Jolin HE, Heycock MWD, Walker JA, Rana BM, Drynan LF, Hodskinson M, et al: Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11. Mucosal Immunol. 14:26–37. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Byers DE, Jin X, Agapov E, Alexander-Brett J, Patel AC, Cella M, Gilfilan S, Colonna M, Kober DL, et al: TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J Exp Med. 212:681–697. 2015. View Article : Google Scholar : PubMed/NCBI | |
Botelho F, Dubey A, Ayaub EA, Park R, Yip A, Humbles A, Kolbeck R and Richards CD: IL-33 mediates lung inflammation by the IL-6-type cytokine oncostatin M. Mediators Inflamm. 2020:40873152020. View Article : Google Scholar : PubMed/NCBI | |
Pei W, Zhang Y, Li X, Luo M, Chen T, Zhang M, Zhong M and Lv K: LncRNA AK085865 depletion ameliorates asthmatic airway inflammation by modulating macrophage polarization. Int Immunopharmacol. 83:1064502020. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Wang J, Mo Y, Ye L, Zhu G, Song X, Zhu M, Xue X, Yang C and Jin M: Salidroside suppresses group 2 innate lymphoid cell-mediated allergic airway inflammation by targeting IL-33/ST2 axis. Int Immunopharmacol. 81:1062432020. View Article : Google Scholar : PubMed/NCBI | |
Nagashima R, Kosai H, Masuo M, Izumiyama K, Noshikawaji T, Morimoto M, Kumaki S, Miyazaki Y, Motohashi H, Yamamoto M and Tanaka N: Nrf2 suppresses allergic lung inflammation by attenuating the type 2 innate lymphoid cell response. J Immunol. 202:1331–1339. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bando JK, Nussbaum JC, Liang HE and Locksley RM: Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung. J Leukoc Biol. 94:877–884. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Li D, Zhang X, Wan Q, Zhang W, Zheng M, Zou L, Elly C, Lee JH and Liu YC: E3 Ligase VHL promotes group 2 innate lymphoid cell maturation and function via glycolysis inhibition and induction of interleukin-33 receptor. Immunity. 48:258–270.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Qiu P, Qin J, Wu X, Wang X, Yang X, Li B, Zhang W, Ye K, Peng Z and Lu X: Allogeneic adipose-derived stem cells promote ischemic muscle repair by inducing M2 macrophage polarization via the HIF-1α/IL-10 pathway. Stem Cells. 38:1307–1320. 2020.PubMed/NCBI | |
Scoville DK, Nolin JD, Ogden HL, An D, Afsharinejad Z, Johnson BW, Bammler TK, Gao X, Frevert CW, Altemeier WA, et al: Quantum dots and mouse strain influence house dust mite-induced allergic airway disease. Toxicol Appl Pharmacol. 368:55–62. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schuijs MJ, Hammad H and Lambrecht BN: Professional and ‘Amateur’ Antigen-presenting cells in type 2 immunity. Trends Immunol. 40:22–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS, Zhang L, Graham GJ, Kurowska-Stolarska M, Liew FY, McSharry C and Xu D: IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol. 134:1422–1432.e11. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park HJ, Chi GY, Choi YH and Park SH: Lupeol suppresses plasminogen activator inhibitor-1-mediated macrophage recruitment and attenuates M2 macrophage polarization. Biochem Biophys Res Commun. 527:889–895. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, De Los Santos FG, Wu Z, Liu T and Phan SH: An ST2-dependent role of bone marrow-derived group 2 innate lymphoid cells in pulmonary fibrosis. J Pathol. 245:399–409. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C, Cooke G, Fahy RJ, Crotty TB, Hirani N, Flynn RJ, et al: IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci USA. 111:367–372. 2014. View Article : Google Scholar : PubMed/NCBI | |
De Grove KC, Provoost S, Verhamme FM, Bracke KR, Joos GF, Maes T and Brusselle GG: Characterization and quantification of innate lymphoid cell subsets in human lung. PLoS One. 11:e01459612016. View Article : Google Scholar : PubMed/NCBI | |
Pouwels SD, Zijlstra GJ, van der Toorn M, Hesse L, Gras R, Ten Hacken NH, Krysko DV, Vandenabeele P, de Vries M, van Oosterhout AJ, et al: Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 310:L377–L386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hershenson MB: Rhinovirus-induced exacerbations of asthma and COPD. Scientifica (Cairo). 2013:4058762013.PubMed/NCBI | |
Zou SC, Pang LL, Mao QS, Wu SY and Xiao QF: IL-9 exacerbates the development of chronic obstructive pulmonary disease through oxidative stress. Eur Rev Med Pharmacol Sci. 22:8877–8884. 2018.PubMed/NCBI | |
Wei Q, Sha Y, Bhattacharya A, Abdel Fattah E, Bonilla D, Jyothula SS, Pandit L, Khurana Hershey GK and Eissa NT: Regulation of IL-4 receptor signaling by STUB1 in lung inflammation. Am J Respir Crit Care Med. 189:16–29. 2014.PubMed/NCBI | |
Saha J, Sarkar D, Pramanik A, Mahanti K, Adhikary A and Bhattacharyya S: PGE2-HIF1α reciprocal induction regulates migration, phenotypic alteration and immunosuppressive capacity of macrophages in tumor microenvironment. Life Sci. 253:1177312020. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Wang X, Zhu J, Fei X, Chen H and Li C: Hypoxic tumor-derived exosomal Circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma. Onco Targets Ther. 13:11883–11897. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cui W, Zhang W, Yuan X, Liu S, Li M, Niu J, Zhang P and Li D: Vitamin A deficiency execrates Lewis lung carcinoma via induction of type 2 innate lymphoid cells and alternatively activates macrophages. Food Sci Nutr. 7:1288–1294. 2019. View Article : Google Scholar : PubMed/NCBI | |
Robbins SM and Senger DL: To promote or inhibit glioma progression, that is the question for IL-33. Cell Stress. 5:19–22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mai S, Liu L, Jiang J, Ren P, Diao D, Wang H and Cai K: Oesophageal squamous cell carcinoma-associated IL-33 rewires macrophage polarization towards M2 via activating ornithine decarboxylase. Cell Prolif. 54:e129602021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Razumilava N, Gores GJ, Walters S, Mizuochi T, Mourya R, Bessho K, Wang YH, Glaser SS, Shivakumar P and Bezerra JA: Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest. 124:3241–3251. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Xia S, Zhang L, Wang W, Chen L and Zhan W: MiR-324-5p/PTPRD/CEBPD axis promotes papillary thyroid carcinoma progression via microenvironment alteration. Cancer Biol Ther. 21:522–532. 2020. View Article : Google Scholar : PubMed/NCBI | |
You Y, Zhang X, Wang X, Yue D, Meng F, Zhu J, Wang Y and Sun X: ILC2 Proliferated by IL-33 stimulation alleviates acute colitis in Rag1(−/-) Mouse through promoting M2 macrophage polarization. J Immunol Res. 2020:50189752020. View Article : Google Scholar : PubMed/NCBI | |
Della Valle L, Gatta A, Farinelli A, Scarano G, Lumaca A, Tinari N, Cipollone F, Paganelli R and Di Gioacchino M: Allergooncology: An expanding research area. J Biol Regul Homeost Agents. 34:319–326. 2020.PubMed/NCBI | |
Park HJ, Chi GY, Choi YH and Park SH: The root bark of Morus alba L. regulates tumor-associated macrophages by blocking recruitment and M2 polarization of macrophages. Phytother Res. 34:3333–3344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Esposito S, De Simone G, Boccia G, De Caro F and Pagliano P: Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J Glob Antimicrob Resist. 10:204–212. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Xu J, Xu L, Jin S, Turnquist HR, Hoffman R, Loughran P, Billiar TR and Deng M: Interleukin-33 contributes to ILC2 activation and early inflammation-associated lung injury during abdominal sepsis. Immunol Cell Biol. 96:935–947. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nascimento DC, Melo PH, Pineros AR, Ferreira RG, Colon DF, Donate PB, Castanheira FV, Gozzi A, Czaikoski PG, Niedbala W, et al: IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun. 8:149192017. View Article : Google Scholar : PubMed/NCBI |