1
|
Bhargava M and Wendt CH: Biomarkers in
acute lung injury. Transl Res. 159:205–217. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Butt Y, Kurdowska AK and Allen TC: Acute
lung injury: A clinical and molecular review. Arch Pathol Lab Med.
140:345–350. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Elicker BM, Jones KT, Naeger DM and Frank
JA: Imaging of acute lung injury. Radiol Clin North Am.
54:1119–1132. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mowery NT, Terzian WTH and Nelson AC:
Acute lung injury. Curr Probl Surg. 57:1007772020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Janz DR and Ware LB: Biomarkers of
ALI/ARDS: Pathogenesis, discovery, and relevance to clinical
trials. Semin Respir Crit Care Med. 34:537–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lekka ME, Liokatis S, Nathanail C, Galani
V and Nakos G: The impact of IV fat emulsion administration in
acute lung injury. Nutr Clin Pract. 19:531–532. 2004. View Article : Google Scholar
|
7
|
Shih JM, Shih YM, Pai MH, Hou YC, Yeh CL
and Yeh SL: Fish oil-based fat emulsion reduces acute kidney injury
and inflammatory response in antibiotic-treated polymicrobial
septic mice. Nutrients. 8:1652016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schaefer MB, Ott J, Mohr A, Bi MH, Grosz
A, Weissmann N, Ishii S, Grimminger F, Seeger W and Mayer K:
Immunomodulation by n-3-versus n-6-rich lipid emulsions in murine
acute lung injury-role of platelet-activating factor receptor. Crit
Care Med. 35:544–554. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lekka ME, Liokatis S, Nathanail C, Galani
V and Nakos G: The impact of intravenous fat emulsion
administration in acute lung injury. Am J Respir Crit Care Med.
169:638–644. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ishitsuka Y, Moriuchi H, Yang C, Golbidi
S, Irikura M and Irie T: Effects of bolus injection of
soybean-based fat emulsion and fatty acids on pulmonary gas
exchange function. Biol Pharm Bull. 32:500–503. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu GH, Zaniolo O, Schuster H, Schlotzer E
and Pradelli L: Structured triglycerides versus physical mixtures
of medium- and long-chain triglycerides for parenteral nutrition in
surgical or critically ill adult patients: Systematic review and
meta-analysis. Clin Nutr. 36:150–161. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lin M, Yeh SL, Tsou SS, Wang MY and Chen
WJ: Effects of parenteral structured lipid emulsion on modulating
the inflammatory response in rats undergoing a total gastrectomy.
Nutrition. 25:115–121. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Das K and Ghosh M: Structured DAG oil
ameliorates renal injury in streptozotocin-induced diabetic rats
through inhibition of NF-κB and activation of Nrf2 pathway. Food
Chem Toxicol. 100:225–238. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Marinissen MJ and Gutkind JS:
G-protein-coupled receptors and signaling networks: Emerging
paradigms. Trends Pharmacol Sci. 22:368–376. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ren Z, Chen L, Wang Y, Wei X, Zeng S,
Zheng Y, Gao C and Liu H: Activation of the omega-3 fatty acid
receptor GPR120 protects against focal cerebral ischemic injury by
preventing inflammation and apoptosis in mice. J Immunol.
202:747–759. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gaspar RC, Veiga CB, Bessi MP, Dátilo MN,
Sant'Ana MR, Rodrigues PB, de Moura LP, da Silva ASR, Santos GA,
Catharino RR, et al: Unsaturated fatty acids from flaxseed oil and
exercise modulate GPR120 but not GPR40 in the liver of obese mice:
A new anti-inflammatory approach. J Nutr Biochem. 66:52–62. 2019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wanten GJ and Calder PC: Immune modulation
by parenteral lipid emulsions. Am J Clin Nutr. 85:1171–1184. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Oh DY, Talukdar S, Bae EJ, Imamura T,
Morinaga H, Fan W, Li P, Lu WJ, Watkins SM and Olefsky JM: GPR120
is an omega-3 fatty acid receptor mediating potent
anti-inflammatory and insulin-sensitizing effects. Cell.
142:687–698. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huang Q, Wang T and Wang HY: Ginsenoside
Rb2 enhances the anti-inflammatory effect of ω-3 fatty acid in
LPS-stimulated RAW264.7 macrophages by upregulating GPR120
expression. Acta Pharmacol Sin. 38:192–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang Y, Xu CF, Liu YJ, Mao YF, Lv Z, Li
SY, Zhu XY and Jiang L: Salidroside attenuates ventilation induced
lung injury via SIRT1-dependent inhibition of NLRP3 inflammasome.
Cell Physiol Biochem. 42:34–43. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Lv H, Liu Q, Wen Z, Feng H, Deng X and Ci
X: Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute
lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox
Biol. 12:311–324. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhu T, Wang DX, Zhang W, Liao XQ, Guan X,
Bo H, Sun JY, Huang NW, He J, Zhang YK, et al: Andrographolide
protects against LPS-induced acute lung injury by inactivation of
NF-κB. PLoS One. 8:e564072013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lei J, Wei Y, Song P, Li Y, Zhang T, Feng
Q and Xu G: Cordycepin inhibits LPS-induced acute lung injury by
inhibiting inflammation and oxidative stress. Eur J Pharmacol.
818:110–114. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang HX, Liu SJ, Tang XL, Duan GL, Ni X,
Zhu XY, Liu YJ and Wang CN: H2S attenuates LPS-induced acute lung
injury by reducing oxidative/nitrative stress and inflammation.
Cell Physiol Biochem. 40:1603–1612. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hou S, Ding H, Lv Q, Yin X, Song J, Landén
NX and Fan H: Therapeutic effect of intravenous infusion of
perfluorocarbon emulsion on LPS-induced acute lung injury in rats.
PLoS One. 9:e878262014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jing H, Yao J, Liu X, Fan H, Zhang F, Li
Z, Tian X and Zhou Y: Fish-oil emulsion (omega-3 polyunsaturated
fatty acids) attenuates acute lung injury induced by intestinal
ischemia-reperfusion through adenosine 5′-monophosphate-activated
protein kinase-sirtuin1 pathway. J Surg Res. 187:252–261. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Piper SN, Röhm KD, Boldt J, Odermatt B,
Maleck WH and Suttner SW: Hepatocellular integrity in patients
requiring parenteral nutrition: Comparison of structured MCT/LCT vs
a standard MCT/LCT emulsion and a LCT emulsion. Eur J Anaesthesiol.
25:557–565. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mizock BA and DeMichele SJ: The acute
respiratory distress syndrome: Role of nutritional modulation of
inflammation through dietary lipids. Nutr Clin Pract. 19:563–574.
2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hecker M, Linder T, Ott J, Walmrath HD,
Lohmeyer J, Vadász I, Marsh LM, Herold S, Reichert M, Buchbinder A,
et al: Immunomodulation by lipid emulsions in pulmonary
inflammation: A randomized controlled trial. Crit Care. 19:2262015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhao Y and Wang C: Meta-analysis of
structured triglyceride versus physical mixture medium- and
long-chain triglycerides for PN in liver resection patients. Biomed
Res Int. 2017:49201342017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kruimel JW, Naber TH, van der Vliet JA,
Carneheim C, Katan MB and Jansen JB: Parenteral structured
triglyceride emulsion improves nitrogen balance and is cleared
faster from the blood in moderately catabolic patients. JPEN J
Parenter Enteral Nutr. 25:237–244. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li C, Ni Q, Pei Y, Ren Y and Feng Y:
Meta-analysis of the efficacy and safety of structured triglyceride
lipid emulsions in parenteral nutrition therapy in China. Clin
Nutr. 38:1524–1535. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim CS, Joo SY, Kim IJ, Choi HI, Bae EH,
Kim SW and Ma SK: Anti-apoptotic effect of G-protein-coupled
receptor 40 activation on tumor necrosis factor-α-induced injury of
rat proximal tubular cells. Int J Mol Sci. 20:33862019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wlodarczyk M, Sobolewska-Włodarczyk A,
Cygankiewicz AI, Jacenik D, Krajewska WM, Stec-Michalska K,
Piechota-Polańczyk A, Wiśniewska-Jarosińska M and Fichna J: G
protein-coupled receptor 55 (GPR55) expresses differently in
patients with Crohn's disease and ulcerative colitis. Scand J
Gastroenterol. 52:711–715. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lu M and Zhou E: Long noncoding RNA
LINC00662-miR-15b-5p mediated GPR120 dysregulation contributes to
osteoarthritis. Pathol Int. 70:155–165. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Su VY, Chiou SH, Lin CS, Chen WC, Yu WK,
Chen YW, Chen CY and Yang KY: Induced pluripotent stem cells reduce
neutrophil chemotaxis via activating GRK2 in endotoxin-induced
acute lung injury. Respirology. 22:1156–1164. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lee T, Packiriswamy N, Lee E, Lucas PC,
Mccabe LR and Parameswaran N: Role of G protein-coupled receptor
kinase-6 in Escherichia coli lung infection model in mice.
Physiol Genomics. 49:682–689. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Huang Z, Guo F, Xia Z, Liang Y, Lei S, Tan
Z, Ma L and Fu P: Activation of GPR120 by TUG891 ameliorated
cisplatin-induced acute kidney injury via repressing ER stress and
apoptosis. Biomed Pharmacother. 126:1100562020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wellhauser L and Belsham DD: Activation of
the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory
actions in immortalized hypothalamic neurons. J Neuroinflammation.
11:602014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sakurai H: Targeting of TAK1 in
inflammatory disorders and cancer. Trends Pharmacol Sci.
33:522–530. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gao D, Wang R, Li B, Yang Y, Zhai Z and
Chen DY: WDR34 is a novel TAK1-associated suppressor of the
IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway. Cell Mol Life
Sci. 66:2573–2584. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang W, Xia T and Yu X: Wogonin suppresses
inflammatory response and maintains intestinal barrier function via
TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm Res.
64:423–431. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang Y, Tu Q, Yan W, Xiao D, Zeng Z,
Ouyang Y, Huang L, Cai J, Zeng X, Chen YJ and Liu A: CXC195
suppresses proliferation and inflammatory response in LPS-induced
human hepatocellular carcinoma cells via regulating
TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway. Biochem Biophys
Res Commun. 456:373–379. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang X, Kume S, Tanaka Y, Isshiki K, Araki
S, Chin-Kanasaki M, Sugimoto T, Koya D, Haneda M, Sugaya T, et al:
GW501516, a PPARδ agonist, ameliorates tubulointerstitial
inflammation in proteinuric kidney disease via inhibition of
TAK1-NFκB pathway in mice. PLoS One. 6:e252712011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang S, Yu Z, Yuan T, Wang L, Wang X, Yang
H, Sun L, Wang Y and Du G: Therapeutic effect of methyl salicylate
2-O-β-d-lactoside on LPS-induced acute lung injury by inhibiting
TAK1/NF-kappaB phosphorylation and NLRP3 expression. Int
Immunopharmacol. 40:219–228. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hara T, Hirasawa A, Ichimura A, Kimura I
and Tsujimoto G: Free fatty acid receptors FFAR1 and GPR120 as
novel therapeutic targets for metabolic disorders. J Pharm Sci.
100:3594–3601. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Baker MA, Nandivada P, Mitchell PD, Fell
GL, Pan A, Cho BS, De La Flor DJ, Anez-Bustillos L, Dao DT, Nosé V
and Puder M: Omega-3 fatty acids are protective in hepatic ischemia
reperfusion injury in the absence of GPR120 signaling. J Pediatr
Surg. 54:2392–2397. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen YL, Lin YP, Sun CK, Huang TH, Yip HK
and Chen YT: Extracorporeal shockwave against inflammation mediated
by GPR120 receptor in cyclophosphamide-induced rat cystitis model.
Mol Med. 24:602018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Meng Z, Si CY, Teng S, Yu XH and Li HY:
Tanshinone IIA inhibits lipopolysaccharide-induced inflammatory
responses through the TLR4/TAK1/NF-κB signaling pathway in vascular
smooth muscle cells. Int J Mol Med. 43:1847–1858. 2019.PubMed/NCBI
|
51
|
Sun P, Song SZ, Jiang S, Li X, Yao YL, Wu
YL, Lian LH and Nan JX: Salidroside regulates inflammatory response
in raw 264.7 macrophages via TLR4/TAK1 and ameliorates inflammation
in alcohol binge drinking-induced liver injury. Molecules.
21:14902016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yi H, Peng R, Zhang LY, Sun Y, Peng HM,
Liu HD, Yu LJ, Li AL, Zhang YJ, Jiang WH and Zhang Z:
LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3
inflammasome-mediated inflammation in diabetic nephropathy. Cell
Death Dis. 8:e25832017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Bai Y, Li Z, Liu W, Gao D, Liu M and Zhang
P: Biochanin A attenuates myocardial ischemia/reperfusion injury
through the TLR4/NF-κB/NLRP3 signaling pathway. Acta Cir Bras.
34:e2019011042019. View Article : Google Scholar : PubMed/NCBI
|