Regulation and mechanism of YAP/TAZ in the mechanical microenvironment of stem cells (Review)
Erratum in: /10.3892/mmr.2021.12265
- Authors:
- Ying Li
- Jinming Wang
- Weiliang Zhong
-
Affiliations: Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China - Published online on: May 10, 2021 https://doi.org/10.3892/mmr.2021.12145
- Article Number: 506
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Vining KH and Mooney DJ: Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 18:728–742. 2017. View Article : Google Scholar : PubMed/NCBI | |
Demehri S and Kopan R: Notch signaling in bulge stem cells is not required for selection of hair follicle fate. Development. 136:891–896. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, et al: Role of YAP/TAZ in mechanotransduction. Nature. 474:179–183. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Park HK and Kim KS: Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells. Biochem Biophys Res Commun. 473:752–757. 2016. View Article : Google Scholar : PubMed/NCBI | |
Engler AJ, Sen S, Sweeney HL and Discher DE: Matrix elasticity directs stem cell lineage specification. Cell. 126:677–689. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhou J, Chowdhury F, Cheng J, Wang N and Wang F: Role of mechanical factors in fate decisions of stem cells. Regen Med. 6:229–240. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S and Jin S: Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA. 106:2130–2135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhong W, Tian K, Zheng X, Li L, Zhang W, Wang S and Qin J: Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by Yes-associated protein. Stem Cells Deve. 22:2083–2093. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ishihara E and Nishina H: Role of Hippo-YAP/TAZ signaling pathway in mechanotransduction. Clin Calcium. 26:1751–1756. 2016.(In Japanese). PubMed/NCBI | |
McBeath R, Pirone DM, Nelson CM, Bhadriraju K and Chen CS: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 6:483–495. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dupont S: Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. 343:42–53. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pocaterra A, Romani P and Dupont S: YAP/TAZ functions and their regulation at a glance. J Cell Sci. 133:jcs2304252020. View Article : Google Scholar : PubMed/NCBI | |
Pan JX, Xiong L, Zhao K, Zeng P, Wang B, Tang FL, Sun D, Guo HH, Yang X, Cui S, et al: YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling. Bone Res. 6:182018. View Article : Google Scholar : PubMed/NCBI | |
Oliver-De La Cruz J, Nardone G, Vrbsky J, Pompeiano A, Perestrelo AR, Capradossi F, Melajová K, Filipensky P and Forte G: Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials. 205:64–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang BK, Chang ML, Wan ZQ and Han GL: Cyclic stretch enhances osteogenic differentiation of human periodontal ligament cells via YAP activation. BioMed Res Int. 2018:21748242018. View Article : Google Scholar : PubMed/NCBI | |
Kim NG, Koh E, Chen X and Gumbiner BM: E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA. 108:11930–11935. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xue X, Hong X, Li Z, Deng CX and Fu J: Acoustic tweezing cytometry enhances osteogenesis of human mesenchymal stem cells through cytoskeletal contractility and YAP activation. Biomaterials. 134:22–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu JK, Du W, Shelton SJ, Oldham MC, DiPersio CM and Klein OD: An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell. 21:91–106.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lecarpentier E, Bhatt M, Bertin GI, Deloison B, Salomon LJ, Deloron P, Fournier T, Barakat AI and Tsatsaris V: Computational fluid dynamic simulations of maternal circulation: Wall shear stress in the human placenta and its biological implications. PLoS One. 11:e01472622016. View Article : Google Scholar : PubMed/NCBI | |
Adamo L and Garcia-Cardeña G: Directed stem cell differentiation by fluid mechanical forces. Antioxid Redox Signal. 15:1463–1473. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kaneko K, Ito M, Naoe Y, Lacy-Hulbert A and Ikeda K: Integrin alphav in the mechanical response of osteoblast lineage cells. Biochem Biophys Res Commun. 447:352–357. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhong W, Zhang W, Wang S and Qin J: Regulation of fibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS One. 8:e612832013. View Article : Google Scholar : PubMed/NCBI | |
Wang KC, Yeh YT, Nguyen P, Limqueco E, Lopez J, Thorossian S, Guan KL, Li YJ and Chien S: Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc Natl Acad Sci USA. 113:11525–11530. 2016. View Article : Google Scholar : PubMed/NCBI | |
Halder G, Dupont S and Piccolo S: Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 13:591–600. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang G, Luo X, Qiu J and Tang C: Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells. Burns. 38:414–420. 2012. View Article : Google Scholar : PubMed/NCBI | |
Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, et al: Tensional homeostasis and the malignant phenotype. Cancer Cell. 8:241–254. 2005. View Article : Google Scholar : PubMed/NCBI | |
Discher DE, Janmey P and Wang YL: Tissue cells feel and respond to the stiffness of their substrate. Science. 310:1139–1143. 2005. View Article : Google Scholar : PubMed/NCBI | |
Connelly JT, Gautrot JE, Trappmann B, Tan DW, Donati G, Huck WT and Watt FM: Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol. 12:711–718. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Gong Y, Sun S, Du Y, Lü D, Liu X and Long M: Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials. 34:7616–7625. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hadden WJ, Young JL, Holle AW, McFetridge ML, Kim DY, Wijesinghe P, Taylor-Weiner H, Wen JH, Lee AR, Bieback K, et al: Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci USA. 114:5647–5652. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nelson CM and Bissell MJ: Modeling dynamic reciprocity: Engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol. 15:342–352. 2005. View Article : Google Scholar : PubMed/NCBI | |
Witkowska-Zimny M, Walenko K, Wrobel E, Mrowka P, Mikulska A and Przybylski J: Effect of substrate stiffness on the osteogenic differentiation of bone marrow stem cells and bone-derived cells. Cell Biol Int. 37:608–616. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brusatin G, Panciera T, Gandin A, Citron A and Piccolo S: Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nat Mater. 17:1063–1075. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DI, Whitesides GM and Ingber DE: Engineering cell shape and function. Science. 264:696–698. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kuroda M, Wada H, Kimura Y, Ueda K and Kioka N: Vinculin promotes nuclear localization of TAZ to inhibit ECM stiffness-dependent differentiation into adipocytes. J Cell Sci. 130:989–1002. 2017. View Article : Google Scholar : PubMed/NCBI | |
Musah S, Morin SA, Wrighton PJ, Zwick DB, Jin S and Kiessling LL: Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano. 6:10168–10177. 2012. View Article : Google Scholar : PubMed/NCBI | |
Caliari SR, Vega SL, Kwon M, Soulas EM and Burdick JA: Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials. 103:314–323. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Butler JP and Ingber DE: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 260:1124–1127. 1993. View Article : Google Scholar : PubMed/NCBI | |
Eyckmans J, Boudou T, Yu X and Chen CS: A hitchhiker's guide to mechanobiology. Deve Cell. 21:35–47. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dogterom M, Kerssemakers JW, Romet-Lemonne G and Janson ME: Force generation by dynamic microtubules. Curr Opin Cell Biol. 17:67–74. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vogel V and Sheetz M: Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 7:265–275. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schwartz MA: Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol. 2:a0050662010. View Article : Google Scholar : PubMed/NCBI | |
Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR and Janody F: Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development. 138:2337–2346. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki H and Halder G: Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J. 30:2325–2335. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty S, Njah K, Pobbati AV, Lim YB, Raju A, Lakshmanan M, Tergaonkar V, Lim CT and Hong W: Agrin as a Mechanotransduction signal regulating YAP through the hippo pathway. Cell Rep. 18:2464–2479. 2017. View Article : Google Scholar : PubMed/NCBI | |
Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ, Oria R, Kechagia JZ, Rico-Lastres P, Le Roux AL, et al: Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 171:1397–1410.e14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dasgupta I and McCollum D: Control of cellular responses to mechanical cues through YAP/TAZ regulation. J Biol Chem. 294:17693–17706. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cawthorn WP, Scheller EL and MacDougald OA: Adipose tissue stem cells meet preadipocyte commitment: Going back to the future. J Lipid Res. 53:227–246. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z and Chen CS: Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods. 7:733–736. 2010. View Article : Google Scholar : PubMed/NCBI | |
Geng Y and Wang Z: Review of cellular mechanotransduction on micropost substrates. Med Biol Eng Comput. 54:249–271. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sero JE and Bakal C: Multiparametric analysis of cell shape demonstrates that beta-PIX directly couples YAP activation to extracellular matrix adhesion. Cell Syst. 4:84–96.e86. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Rowe RG, Botvinick EL, Kurup A, Putnam AJ, Seiki M, Weaver VM, Keller ET, Goldstein S, Dai J, et al: MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev Cell. 25:402–416. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gattazzo F, Urciuolo A and Bonaldo P: Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 1840:2506–2519. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu D, Luo C, Zhang C, Li Z and Long M: Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials. 35:3945–3955. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pucci B, Kasten M and Giordano A: Cell cycle and apoptosis. Neoplasia. 2:291–299. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM and Caplan AI: Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med. 4:222019. View Article : Google Scholar : PubMed/NCBI | |
Chen CS, Mrksich M, Huang S, Whitesides GM and Ingber DE: Geometric control of cell life and death. Science. 276:1425–1428. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wada K, Itoga K, Okano T, Yonemura S and Sasaki H: Hippo pathway regulation by cell morphology and stress fibers. Development. 138:3907–3914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pek YS, Wan AC and Ying JY: The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials. 31:385–391. 2010. View Article : Google Scholar : PubMed/NCBI | |
Burke DP and Kelly DJ: Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: A mechanobiological model. PLoS One. 7:e407372012. View Article : Google Scholar : PubMed/NCBI | |
Tse JR and Engler AJ: Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One. 6:e159782011. View Article : Google Scholar : PubMed/NCBI | |
Panciera T, Azzolin L, Cordenonsi M and Piccolo S: Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 18:758–770. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hansen CG, Moroishi T and Guan KL: YAP and TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol. 25:499–513. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bejoy J, Song L and Li Y: Wnt-YAP interactions in the neural fate of human pluripotent stem cells and the implications for neural organoid formation. Organogenesis. 12:1–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Feinberg T, Keller ET, Li XY and Weiss SJ: Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol. 18:917–929. 2016. View Article : Google Scholar : PubMed/NCBI | |
Szeto SG, Narimatsu M, Lu M, He X, Sidiqi AM, Tolosa MF, Chan L, De Freitas K, Bialik JF, Majumder S, et al: YAP/TAZ Are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J Am Soc Nephrol. 27:3117–3128. 2016. View Article : Google Scholar : PubMed/NCBI | |
Plouffe SW, Meng Z, Lin KC, Lin B, Hong AW, Chun JV and Guan KL: Characterization of hippo pathway components by gene inactivation. Mol Cell. 64:993–1008. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bae JS, Kim SM and Lee H: The Hippo signaling pathway provides novel anti-cancer drug targets. Oncotarget. 8:16084–16098. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Gu C, Jeong KJ, Zhang D, Guo W, Lu Y, Ju Z, Panupinthu N, Yang JY, Gagea MM, et al: YAP/TAZ-mediated upregulation of GAB2 leads to increased sensitivity to growth factor-induced activation of the PI3K pathway. Cancer Res. 77:1637–1648. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Luo JY, Li B, Tian XY, Chen LJ, Huang Y, Liu J, Deng D, Lau CW, Wan S, et al: Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 540:579–582. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sukumaran SK, Stumpf M, Salamon S, Ahmad I, Bhattacharya K, Fischer S, Müller R, Altmüller J, Budde B, Thiele H, et al: CDK5RAP2 interaction with components of the Hippo signaling pathway may play a role in primary microcephaly. Mol Genet Genomics. 292:365–383. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR and Camargo FD: Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell. 144:782–795. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Bai Y, Song B, Wang Y, Liu D, Lai Y, Bi X and Yuan Z: PP1A-mediated dephosphorylation positively regulates YAP2 activity. PLoS One. 6:e242882011. View Article : Google Scholar : PubMed/NCBI | |
Denis D, Rouleau C and Schaffhausen BS: A transformation-defective polyomavirus middle T antigen with a novel defect in PI3 kinase signaling. J Virol. 91:e01774–16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng Z, Qiu Y, Lin KC, Kumar A, Placone JK, Fang C, Wang KC, Lu S, Pan M, Hong AW, et al: RAP2 mediates mechanoresponses of the Hippo pathway. Nature. 560:655–660. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Azzolin L, Di Biagio D, Zanconato F, Battilana G, Lucon Xiccato R, Aragona M, Giulitti S, Panciera T, Gandin A, et al: The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature. 563:265–269. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Brito I and Lammerding J: Beyond tissue stiffness and bioadhesivity: Advanced biomaterials to model tumor microenvironments and drug resistance. Trends Cancer. 4:281–291. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lopez JI, Mouw JK and Weaver VM: Biomechanical regulation of cell orientation and fate. Oncogene. 27:6981–6993. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hoon JL, Tan MH and Koh CG: The regulation of cellular responses to mechanical cues by Rho GTPases. Cells. 5:172016. View Article : Google Scholar : PubMed/NCBI | |
Spector AA and Grayson WL: Stem cell fate decision making: Modeling approaches. ACS Biomater Sci Eng. 3:2702–2711. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu RX, Yin Y, He XT, Li X and Chen FM: Engineering a cell home for stem cell homing and accommodation. Adv Biosyst. 1:e17000042017. View Article : Google Scholar : PubMed/NCBI | |
Costanza B, Umelo IA, Bellier J, Castronovo V and Turtoi A: Stromal modulators of TGF-β in cancer. J Clin Med. 6:72017. View Article : Google Scholar : PubMed/NCBI | |
Janmey PA, Wells RG, Assoian RK and McCulloch CA: From tissue mechanics to transcription factors. Differentiation. 86:112–120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Muehlich S, Rehm M, Ebenau A and Goppelt-Struebe M: Synergistic induction of CTGF by cytochalasin D and TGFbeta-1 in primary human renal epithelial cells: Role of transcriptional regulators MKL1, YAP/TAZ and Smad2/3. Cell Signal. 29:31–40. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rana MK, Aloisio FM, Choi C and Barber DL: Formin-dependent TGF-β signaling for epithelial to mesenchymal transition. Mol Biol Cell. 29:1465–1475. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH, Tan QH, Gruber J and Tolwinski NS: WNT signaling in disease. Cells. 8:8262019. View Article : Google Scholar : PubMed/NCBI | |
Mezzacappa C, Komiya Y and Habas R: Activation and function of small GTPases Rho, Rac, and Cdc42 during gastrulation. Methods Mol Biol. 839:119–131. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R, et al: Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr Biol. 21:933–941. 2011. View Article : Google Scholar : PubMed/NCBI | |
Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW and Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 10:837–848. 2008. View Article : Google Scholar : PubMed/NCBI | |
Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J and Wrana JL: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 19:831–844. 2010. View Article : Google Scholar : PubMed/NCBI | |
Narimatsu M, Samavarchi-Tehrani P, Varelas X and Wrana JL: Distinct polarity cues direct Taz/Yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling. Dev Cell. 32:652–656. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, et al: Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 139:757–769. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qin Z, Xia W, Fisher GJ, Voorhees JJ and Quan T: YAP/TAZ regulates TGF-β/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts. Cell Commun Signal. 16:182018. View Article : Google Scholar : PubMed/NCBI | |
Serowoky MA, Arata CE, Crump JG and Mariani FV: Skeletal stem cells: Insights into maintaining and regenerating the skeleton. Development. 147:dev1793252020. View Article : Google Scholar : PubMed/NCBI | |
Tang Y and Weiss SJ: Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation. Cell Cycle. 16:399–405. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kovar H, Bierbaumer L and Radic-Sarikas B: The YAP/TAZ pathway in osteogenesis and bone sarcoma pathogenesis. Cells. 9:9722020. View Article : Google Scholar : PubMed/NCBI | |
Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD and Kenney AM: YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 23:2729–2741. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin YT, Ding JY, Li MY, Yeh TS, Wang TW and Yu JY: YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res. 318:1877–1888. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hayashi S, Tamura K and Yokoyama H: Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration. Dev Biol. 388:57–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hsu TH, Yang CY, Yeh TH, Huang YC, Wang TW and Yu JY: The Hippo pathway acts downstream of the Hedgehog signaling to regulate follicle stem cell maintenance in the Drosophila ovary. Sci Rep. 7:44802017. View Article : Google Scholar : PubMed/NCBI | |
Machado MV, Michelotti GA, Pereira TA, Xie G, Premont R, Cortez-Pinto H and Diehl AM: Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J Hepatol. 63:962–970. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, Shrestha K, Cahan P, Stanger BZ and Camargo FD: Hippo pathway activity influences liver cell fate. Cell. 157:1324–1338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cotton JL, Li Q, Ma L, Park JS, Wang J, Ou J, Zhu LJ, Ip YT, Johnson RL and Mao J: YAP/TAZ and hedgehog coordinate growth and patterning in gastrointestinal mesenchyme. Dev Cell. 43:35–47.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M and Deng X: Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front Cell Dev Biol. 8:7352020. View Article : Google Scholar : PubMed/NCBI | |
Blanpain C and Fuchs E: Epidermal homeostasis: A balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 10:207–217. 2009. View Article : Google Scholar : PubMed/NCBI | |
Simpson CL, Patel DM and Green KJ: Deconstructing the skin: Cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol. 12:565–580. 2011. View Article : Google Scholar : PubMed/NCBI | |
Watt FM, Estrach S and Ambler CA: Epidermal Notch signalling: Differentiation, cancer and adhesion. Curr Opin Cell Biol. 20:171–179. 2008. View Article : Google Scholar : PubMed/NCBI | |
Totaro A, Castellan M, Battilana G, Zanconato F, Azzolin L, Giulitti S, Cordenonsi M and Piccolo S: YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nat Commun. 8:152062017. View Article : Google Scholar : PubMed/NCBI | |
Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M and Sheetz M: YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 588:2663–2670. 2014. View Article : Google Scholar : PubMed/NCBI | |
Piccolo S, Cordenonsi M and Dupont S: Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res. 19:4925–4930. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hayashi S, Yokoyama H and Tamura K: Roles of Hippo signaling pathway in size control of organ regeneration. Dev Growth Differ. 57:341–351. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ramos A and Camargo FD: The Hippo signaling pathway and stem cell biology. Trends Cell Biol. 22:339–346. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mo JS, Park HW and Guan KL: The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15:642–656. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hans C: Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Niehrs C and Acebron SP: Mitotic and mitogenic Wnt signalling. EMBO J. 31:2705–2713. 2012. View Article : Google Scholar : PubMed/NCBI | |
Piccolo S, Dupont S and Cordenonsi M: The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev. 94:1287–1312. 2014. View Article : Google Scholar : PubMed/NCBI | |
Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, et al: YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 158:157–170. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, et al: Alternative Wnt signaling activates YAP/TAZ. Cell. 162:780–794. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yuan W, Li Y, Luo J and Hou N: Role of Hippo-YAP1/TAZ pathway and its crosstalk in cardiac biology. Int J Biol Sci. 16:2454–2463. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sato N, Meijer L, Skaltsounis L, Greengard P and Brivanlou AH: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 10:55–63. 2004. View Article : Google Scholar : PubMed/NCBI | |
Weston CR and Davis RJ: The JNK signal transduction pathway. Curr Opin Cell Biol. 19:142–149. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen F: JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res. 72:379–386. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bogoyevitch MA and Kobe B: Uses for JNK: The many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 70:1061–1095. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kaunas R, Usami S and Chien S: Regulation of stretch-induced JNK activation by stress fiber orientation. Cell Signal. 18:1924–1931. 2006. View Article : Google Scholar : PubMed/NCBI | |
Codelia VA, Sun G and Irvine KD: Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr Biol. 24:2012–2017. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Luo JY, Li B, Tian XY, Chen LJ, Huang Y, Liu J, Deng D, Lau CW, Wan S, et al: Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 540:579–582. 2016. View Article : Google Scholar : PubMed/NCBI | |
Plouffe SW, Hong AW and Guan KL: Disease implications of the Hippo/YAP pathway. Trends Mol Med. 21:212–222. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martinez B, Yang Y, Harker DMR, Farrar C, Mukundan H, Nath P and Mascareñas D: YAP/TAZ related BioMechano signal transduction and cancer metastasis. Front Cell Dev Biol. 7:1992019. View Article : Google Scholar : PubMed/NCBI |